On Rational Functions Sharing the Measure of Maximal Entropy

被引:0
作者
Pakovich F. [1 ]
机构
[1] Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva
基金
以色列科学基金会;
关键词
Functional equations; Measure of maximal entropy; Rational functions;
D O I
10.1007/s40598-020-00141-z
中图分类号
学科分类号
摘要
We show that describing rational functions f1, f2, ⋯ , fn sharing the measure of maximal entropy reduces to describing solutions of the functional equation A∘ X1= A∘ X2= ⋯ = A∘ Xn in rational functions. We also provide some results about solutions of this equation. © 2020, Institute for Mathematical Sciences (IMS), Stony Brook University, NY.
引用
收藏
页码:387 / 396
页数:9
相关论文
共 30 条
[1]  
An T.T.H., Diep N.T.N., Genus one factors of curves defined by separated variable polynomials, J. Number Theory, 133, 8, pp. 2616-2634, (2013)
[2]  
Atela P., Sharing a Julia set: The polynomial case, Progress in Holomorphic Dynamics, Pitman Res. Notes Math. Ser., 387, pp. 102-115, (1998)
[3]  
Atela P., Hu J., Commuting polynomials and polynomials with same Julia set, Int. J. Bifurc. Chaos Appl. Sci. Eng., 6, 12A, pp. 2427-2432, (1996)
[4]  
Avanzi R., Zannier U., Genus one curves defined by separated variable polynomials and a polynomial Pell equation, Acta Arith., 99, pp. 227-256, (2001)
[5]  
Avanzi R., Zannier U., The equation f(X) = f(Y) in rational functions X= X(t), Y= Y(t), . Composit. Math., 139, 3, pp. 263-295, (2003)
[6]  
Baker I., Eremenko A., A problem on Julia sets, Ann. Acad. Sci. Fennicae (Series A.I. Math.), 12, pp. 229-236, (1987)
[7]  
Beardon A., Symmetries of Julia sets, Bull. Lond. Math. Soc., 22, 6, pp. 576-582, (1990)
[8]  
Beardon A., Polynomials with identical Julia sets, Complex Var. Theory Appl., 17, 3-4, pp. 195-200, (1992)
[9]  
Beardon A., Ng T.W., Parametrizations of algebraic curves, Ann. Acad. Sci. Fenn. Math., 31, 2, pp. 541-554, (2006)
[10]  
Bilu Y., Tichy R., The Diophantine equation f(x) = g(y), Acta Arith., 95, 3, pp. 261-288, (2000)