A Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type

被引:0
作者
Gregg Musiker
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Annals of Combinatorics | 2011年 / 15卷
关键词
05E15; 16S99; cluster algebras; classical type; perfect matchings; laurentness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type with bipartite seed. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the graphs correspond to the denominator. This complements recent work by Schiffler and Carroll-Price for a cluster expansion formula for the An case while providing a novel interpretation for the Bn, Cn, and Dn cases.
引用
收藏
页码:147 / 184
页数:37
相关论文
共 31 条
[21]   Rigid and Schurian modules over cluster-tilted algebras of tame type [J].
Marsh, Robert J. ;
Reiten, Idun .
MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) :643-682
[22]   Rigid and Schurian modules over cluster-tilted algebras of tame type [J].
Bethany R. Marsh ;
Idun Reiten .
Mathematische Zeitschrift, 2016, 284 :643-682
[23]   Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs [J].
Ilke Canakci ;
Ralf Schiffler .
Mathematische Zeitschrift, 2015, 281 :55-102
[24]   Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs [J].
Canakci, Ilke ;
Schiffler, Ralf .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) :55-102
[25]   Cluster algebras of finite type via Coxeter elements and Demazure crystals of type B,C,D [J].
Kanakubo, Yuki .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 :40-75
[26]   Exchange Relations for Finite Type Cluster Algebras with Acyclic Initial Seed and Principal Coefficients [J].
Stella, Salvatore ;
Tumarkin, Pavel .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[27]   Q-systems as Cluster Algebras II: Cartan Matrix of Finite Type and the Polynomial Property [J].
Philippe Di Francesco ;
Rinat Kedem .
Letters in Mathematical Physics, 2009, 89 :183-216
[28]   Q-systems as Cluster Algebras II: Cartan Matrix of Finite Type and the Polynomial Property [J].
Di Francesco, Philippe ;
Kedem, Rinat .
LETTERS IN MATHEMATICAL PHYSICS, 2009, 89 (03) :183-216
[29]   (A)over-tilde and (D)over-tilde type cluster algebras: triangulated surfaces and friezes [J].
Pallister, Joe .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (04) :1163-1202