Recent advances in high-performance triboelectric nanogenerators

被引:0
|
作者
Di Liu
Yikui Gao
Linglin Zhou
Jie Wang
Zhong Lin Wang
机构
[1] Chinese Academy of Sciences,Beijing Institute of Nanoenergy and Nanosystems
[2] University of Chinese Academy of Sciences,College of Nanoscience and Technology
[3] Georgia Institute of Technology,School of Materials Science and Engineering
来源
Nano Research | 2023年 / 16卷
关键词
high-performance triboelectric nanogenerator (TENG); charge density; voltage; energy density; average power density;
D O I
暂无
中图分类号
学科分类号
摘要
The development of the Internet of Things (IoT) and artificial intelligence has accompanied the evolution of energy demand and structure in the new era, and the power sources for billions of distributed electronics and sensors have aroused worldwide interest. As an alternative energy harvesting technology, triboelectric nanogenerators (TENGs) have received remarkable attention and have shown attractive potential applications for use in micro/nano power sources, self-powered sensors, high-voltage power sources, and blue energy due to their advantages of small size, light weight, flexibility, low cost, and high efficiency at low frequency. In this review, we discuss high-performance TENGs from the perspectives of triboelectric charge density, output voltage, energy density, and corresponding quantification methods. Among these topics, the limitations, optimization methods and techniques, and potential directions to challenge these limits are comprehensively discussed and reviewed. Finally, we discuss the emerging challenges, strategies, and opportunities for research and development of highperformance TENGs.
引用
收藏
页码:11698 / 11717
页数:19
相关论文
共 50 条
  • [31] Corn Starch-Derived Gel for High-Performance Triboelectric Nanogenerators
    Kamilya, Tapas
    Shin, Jaehee
    Cho, Hanchul
    Park, Jinhyoung
    ACS APPLIED POLYMER MATERIALS, 2023, 6 (01) : 1006 - 1014
  • [32] Construction of high-performance triboelectric nanogenerators based on the microstructures of conical nanoneedles
    Wang, Lixia
    Sun, Xiang
    Wang, Dongfang
    Wang, Chen
    Bi, Zhaojie
    Zhou, Baokai
    Zheng, Lun
    Niu, Hongbin
    Cui, Pengyuan
    Wang, Jian
    Li, Qian
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (46) : 22064 - 22075
  • [33] Advances in Green Triboelectric Nanogenerators
    Du, Taili
    Chen, Zhixiang
    Dong, Fangyang
    Cai, Hu
    Zou, Yongjiu
    Zhang, Yuewen
    Sun, Peiting
    Xu, Minyi
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
  • [34] Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators
    Jing, Titao
    Xu, Bingang
    Yang, Yujue
    Jiang, Chenghanzhi
    Wu, Mengjie
    NANO ENERGY, 2020, 78
  • [35] Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators
    Jing, Titao
    Xu, Bingang
    Yang, Yujue
    Jiang, Chenghanzhi
    Wu, Mengjie
    Nano Energy, 2020, 78
  • [36] Advances in Bioresorbable Triboelectric Nanogenerators
    Kang, Minki
    Lee, Dong-Min
    Rubab, Najaf
    Kim, So-Hee
    Hyun, Inah
    Kim, Sang-Woo
    CHEMICAL REVIEWS, 2023, 123 (19) : 11559 - 11618
  • [37] Advances in Bioinspired Triboelectric Nanogenerators
    Mayer, Mylan
    Xiao, Xiao
    Yin, Junyi
    Chen, Guorui
    Xu, Jing
    Chen, Jun
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (12)
  • [38] Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators
    Tao, Xinglin
    Chen, Xiangyu
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) : 3654 - 3678
  • [39] Recent advances in stretchable triboelectric nanogenerators for use in wearable bioelectronic devices
    Wang, Yaling
    Zhu, Pengcheng
    Sun, Yue
    Li, Pan
    Mao, Yanchao
    BIO-DESIGN AND MANUFACTURING, 2024, 7 (04) : 566 - 590
  • [40] Leveraging Bio-Waste onion skin for High-Performance triboelectric nanogenerators
    Chang, Po-Yen
    Huang, Ting-Ying
    Yang, Chien-Hung
    Lee, Chia-Hsien
    Jeng, Ru-Jong
    Chen, Chih-Ping
    Lin, Meng-Fang
    CHEMICAL ENGINEERING JOURNAL, 2025, 506