On a system of weakly null semilinear wave equations

被引:0
|
作者
Jason Metcalfe
Alexander Stewart
机构
[1] University of North Carolina,Department of Mathematics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Wave equations; Local energy estimates; Weak null condition; Global existence;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a new method for addressing certain weakly null systems of wave equations. This approach does not rely on Lorentz invariance nor on the use of null foliations, both of which restrict applications to, e.g., multiple speed systems. The proof uses a class of space-time Klainerman-Sobolev estimates of the first author, Tataru, and Tohaneanu, which pair nicely with local energy estimates that combine the rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^p$$\end{document}-weighted method of Dafermos and Rodnianski with the ghost weight method of Alinhac. We further refine the standard local energy estimate with a modification of the ∂t-∂r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t-\partial _r$$\end{document} portion of the multiplier.
引用
收藏
相关论文
共 50 条