共 34 条
[31]
Some classes of permutation polynomials of the form b(xq+ax+δ)i(q2-1)d+1+c(xq+ax+δ)j(q2-1)d+1+L(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b(x^q+ax+\delta )^{\frac{i(q^2-1)}{d}+1}+c(x^q+ax+\delta )^{\frac{j(q^2-1)}{d}+1}+L(x)$$\end{document} over Fq2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {{{\mathbb {F}}}}_{q^2}$$\end{document}
[J].
Applicable Algebra in Engineering, Communication and Computing,
2022, 33 (2)
:135-149
[32]
Determining ambiguity, deficiency and differential uniformity of permutation trinomials over F2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}_{2^n}$$\end{document}Determining ambiguity, deficiency and differential uniformity...Y.-P. Wang et al.
[J].
Journal of Applied Mathematics and Computing,
2025, 71 (3)
:3429-3443
[33]
More classes of permutation polynomials of the form (xpm-x+δ)s+L(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(x^{p^m}-x+\delta )^s+L(x)$$\end{document}
[J].
Applicable Algebra in Engineering, Communication and Computing,
2017, 28 (3)
:215-223
[34]
On the Number of Solutions of the Equation
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$a_{1}x_{1}^{m_{1}}+\cdots +a_{n}x_{n}^{m_{n}}=bx_{1}\cdots x_{n}$\end{document}
in a Finite Field
[J].
Acta Applicandae Mathematica,
2005, 85 (1-3)
:35-39