On Minimal Besicovitch Arrangements in Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}_q}^2$$\end{document}: Statistical Properties and Combinatorial Implications

被引:0
作者
Stéphane Blondeau Da Silva
机构
[1] XLIM-Mathis,
[2] UMR n°7252 CNRS-Université de Limoges,undefined
关键词
Besicovitch arrangements; Finite field; Kakeya problem; 11T99; 51D20; 05B05;
D O I
10.1007/s41980-019-00237-z
中图分类号
学科分类号
摘要
In this paper, we focus on planar minimal Besicovitch arrangements to highlight some of their properties. An appropriate probability space enables us to find again in an elegant way some straightforward equalities associated with these arrangements. Resulting inequalities are also brought out. A connection with arrangements of lines in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} is eventually made, where possible.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 34 条
[21]   A class of permutations on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}$$\end{document} with differential uniformity at most 3A class of permutations on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}$$\end{document} with differential uniformity at most 3P. Gupta et al. [J].
Prachi Gupta ;
P. R. Mishra ;
Atul Gaur .
Designs, Codes and Cryptography, 2025, 93 (5) :1283-1293
[23]   On the existence of r-primitive pairs (α,f(α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,f(\alpha ))$$\end{document} in finite fields [J].
Hanglong Zhang ;
Xiwang Cao .
Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (6) :725-738
[24]   Several classes of permutation polynomials with trace functions over Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{p^n}$$\end{document} [J].
Yan-Ping Wang ;
Zhengbang Zha ;
Xiaoni Du ;
Dabin Zheng .
Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (3) :337-349
[26]   Mutually unbiased maximally entangled bases in Cd⊗Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^d$$\end{document} [J].
Junying Liu ;
Minghui Yang ;
Keqin Feng .
Quantum Information Processing, 2017, 16 (6)
[27]   Six new classes of permutation trinomials over F33k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{3^{3k}}$$\end{document} [J].
Yanping Wang ;
Zhengbang Zha ;
Weiguo Zhang .
Applicable Algebra in Engineering, Communication and Computing, 2018, 29 (6) :479-499
[28]   Characterizations and constructions of triple-cycle permutations of the form xrh(xs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^rh(x^s)$$\end{document} [J].
Mengna Wu ;
Chengju Li ;
Zilong Wang .
Designs, Codes and Cryptography, 2020, 88 :2119-2132
[29]   A systematic construction approach for all 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} involutory MDS matrices [J].
Yogesh Kumar ;
P. R. Mishra ;
Susanta Samanta ;
Atul Gaur .
Journal of Applied Mathematics and Computing, 2024, 70 (5) :4677-4697
[30]   FPGA-Specific Efficient Designs of Digit-Serial Multiplier for Galois Field GF(2m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2^m)$$\end{document} [J].
Dibakar Pradhan ;
Pramod Kumar Meher ;
Bimal Kumar Meher .
Circuits, Systems, and Signal Processing, 2025, 44 (3) :1817-1844