On Minimal Besicovitch Arrangements in Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}_q}^2$$\end{document}: Statistical Properties and Combinatorial Implications

被引:0
|
作者
Stéphane Blondeau Da Silva
机构
[1] XLIM-Mathis,
[2] UMR n°7252 CNRS-Université de Limoges,undefined
关键词
Besicovitch arrangements; Finite field; Kakeya problem; 11T99; 51D20; 05B05;
D O I
10.1007/s41980-019-00237-z
中图分类号
学科分类号
摘要
In this paper, we focus on planar minimal Besicovitch arrangements to highlight some of their properties. An appropriate probability space enables us to find again in an elegant way some straightforward equalities associated with these arrangements. Resulting inequalities are also brought out. A connection with arrangements of lines in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} is eventually made, where possible.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 34 条