The Signless p-Laplacian Spectral Radius of Graphs with Given Degree Sequences

被引:0
作者
Zhouyang Chen
Lihua Feng
Wei Jin
Lu Lu
机构
[1] Central South University,School of Mathematics and Statistics, HNP
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Signless ; -Laplacian; Spectral radius; Unicyclic graphs; Extremal graph; 05C50; 05C40; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the spectral radius of signless p-Laplacian of a graph, which is a generalization of the quadratic form of the signless Laplacian matrix for p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}. Let π=(d0,d1,…,dn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi =(d_0,d_1,\ldots ,d_{n-1})$$\end{document} be a non-increasing sequence of positive integers and Gπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{\pi }$$\end{document} the set of graphs with degree sequence π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. In this paper, we obtain some transformations for graphs in Gπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{\pi }$$\end{document} that do not decrease the largest signless p-Laplacian eigenvalue of a graph. Furthermore, if ∑i=0n-1di=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=0}^{n-1}d_i=2n$$\end{document} and d2≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2\ge 2$$\end{document}, then we identify the graph maximizing the signless p-Laplacian spectral radius among Gπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{\pi }$$\end{document}. As an application, we get the extremal graph maximizing the signless p-Laplacian spectral radius among all unicyclic graphs.
引用
收藏
相关论文
共 17 条
[1]  
Amghibech S(2006)Bounds for the largest Discrete Math. 306 2762-2771
[2]  
Andriantiana EOD(2021)-Laplacian eigenvalue for graphs Electron. J. Combin. 28 34-51
[3]  
Razanajatovo MV(2018)Extremal trees with fixed degree sequence Electron. J. Combin. 25 18-955
[4]  
Wagner S(2010)Eigenvalue bounds for the signless Mach. Learn. 81 37-744
[5]  
Borba EM(2003)-Laplacian Illinois J. Math. 47 939-3150
[6]  
Schwerdtfeger U(2011)On the eigenvectors of Linear Multilinear Algebra 59 733-2937
[7]  
Luo D(2008)-Laplacian Discrete Math. 308 3143-276
[8]  
Huang H(2009)The spectrum of the Discrete Appl. Math. 157 2928-undefined
[9]  
Ding C(2011)-Laplacian and Electron. J. Linear Algebra 22 267-undefined
[10]  
Nie F(undefined)-Harmonic morphisms on graphs undefined undefined undefined-undefined