Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates

被引:0
作者
Dong Mao
Lihua Shen
Aihui Zhou
机构
[1] Syracuse University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
来源
Advances in Computational Mathematics | 2006年 / 25卷
关键词
a posteriori error estimate; adaptive algorithm; eigenvalue; finite element; local averaging;
D O I
暂无
中图分类号
学科分类号
摘要
The local averaging technique has become a popular tool in adaptive finite element methods for solving partial differential boundary value problems since it provides efficient a posteriori error estimates by a simple postprocessing. In this paper, the technique is introduced to solve a class of symmetric eigenvalue problems. Its efficiency and reliability are proved by both the theory and numerical experiments structured meshes as well as irregular meshes.
引用
收藏
页码:135 / 160
页数:25
相关论文
共 54 条
[1]  
Arnold D.N.(2000)Locally adapted tetrahedral meshes using bisection SIAM J. Sci. Comput. 22 431-448
[2]  
Mukherjee A.(1989)Regularity and numerical solution of eigenvalue problems with piecewise analytic data SIAM J. Numer. Anal. 26 1534-1560
[3]  
Pouly L.(1989)Finite element-Galerkin approximation for the eigenvalues and eigenvectors of selfadjoint problems Math. Comp. 52 275-297
[4]  
Babuska I.(1994)Validation of a posteriori error estimators by numerical approach Int. J. Numer. Meth. Engrg. 37 1073-1123
[5]  
Guo B.Q.(2001)An optimal control approach to a posteriori error estimation in finite element methods Acta Numerica 10 1-102
[6]  
Osborn J.E.(2000)Adaptive finite element methods for elliptic equations with non-smooth coefficients Numer. Math. 85 579-608
[7]  
Babuska I.(1973)Rate of convergence estimates for nonselfadjoint eigenvalue approximations Math. Comp. 27 525-549
[8]  
Osborn J.E.(1999)Quasi-interpolation and a posteriori analysis in finite element methods RAIRO M2AN 33 1187-1202
[9]  
Babuska I.(2001)An experimental survey of a posteriori Courant finite element error control for the Poisson equation Adv. Comput. Math. 15 79-106
[10]  
Strouboulis T.(1980)Optimal points of stresses for tetrahedron linear element Natur. Sci. J. Xiangtan Univ. 3 16-24