On approximate solutions for robust convex semidefinite optimization problems

被引:0
作者
Jae Hyoung Lee
Gue Myung Lee
机构
[1] Pukyong National University,Department of Applied Mathematics
来源
Positivity | 2018年 / 22卷
关键词
Robust semidefinite optimization problem; -Solution; Robust optimization approach; -Optimality conditions; -Duality theorems; 90C25; 90C29; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider approximate solutions (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions) for a convex semidefinite programming problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we prove an approximate optimality theorem and approximate duality theorems for ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions in robust convex semidefinite programming problem under the robust characteristic cone constraint qualification. Moreover, an example is given to illustrate the obtained results.
引用
收藏
页码:845 / 857
页数:12
相关论文
共 50 条
[41]   Higher-order Optimality Conditions and Duality for Approximate Solutions in Non-convex Set-valued Optimization [J].
Guo-lin YU ;
Tian-tian GONG .
ActaMathematicaeApplicataeSinica, 2019, 35 (03) :620-628
[42]   Higher-order Optimality Conditions and Duality for Approximate Solutions in Non-convex Set-valued Optimization [J].
Guo-lin Yu ;
Tian-tian Gong .
Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 :620-628
[43]   Lagrange Multiplier Rules for Weak Approximate Pareto Solutions of Constrained Vector Optimization Problems in Hilbert Spaces [J].
Zheng, Xi Yin ;
Li, Runxin .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (02) :665-679
[44]   Scalarization of Multiobjective Robust Optimization Problems [J].
Khoshkhabar-amiranloo S. .
Operations Research Forum, 2 (3)
[45]   A Neural Network for Constrained Fuzzy Convex Optimization Problems [J].
Liu, Na ;
Zhang, Han ;
Qin, Sitian .
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, :1007-1012
[46]   On optimality conditions for abstract convex vector optimization problems [J].
Lee, Gue Myung ;
Lee, Kwang Baik .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) :971-985
[47]   EXPONENTIALLY E-CONVEX VECTOR OPTIMIZATION PROBLEMS [J].
Abdulaleem, Najeeb .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (06) :2244-2259
[48]   Asymptotic analysis in convex composite multiobjective optimization problems [J].
Chen, Zhe .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (03) :507-520
[49]   LAGRANGE MULTIPLIER RULES FOR APPROXIMATE SOLUTIONS IN VECTOR OPTIMIZATION [J].
Liu, Caiping ;
Lee, Heungwing .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2012, 8 (03) :749-764
[50]   Characterizations of the solution set for tangentially convex optimization problems [J].
Beni-Asad, M. ;
Mohebi, H. .
OPTIMIZATION LETTERS, 2023, 17 (04) :1027-1048