On approximate solutions for robust convex semidefinite optimization problems

被引:0
作者
Jae Hyoung Lee
Gue Myung Lee
机构
[1] Pukyong National University,Department of Applied Mathematics
来源
Positivity | 2018年 / 22卷
关键词
Robust semidefinite optimization problem; -Solution; Robust optimization approach; -Optimality conditions; -Duality theorems; 90C25; 90C29; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider approximate solutions (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions) for a convex semidefinite programming problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we prove an approximate optimality theorem and approximate duality theorems for ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions in robust convex semidefinite programming problem under the robust characteristic cone constraint qualification. Moreover, an example is given to illustrate the obtained results.
引用
收藏
页码:845 / 857
页数:12
相关论文
共 50 条
[31]   Generalized polyhedral convex optimization problems [J].
Nguyen Ngoc Luan ;
Yao, Jen-Chih .
JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (03) :789-811
[32]   On the solution of convex bilevel optimization problems [J].
Dempe, S. ;
Franke, S. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) :685-703
[33]   Dual Solutions in Convex Stochastic Optimization [J].
Pennanen, Teemu ;
Perkkioe, Ari-Pekka .
MATHEMATICS OF OPERATIONS RESEARCH, 2024,
[34]   Qualitative Properties of Robust Benson Efficient Solutions of Uncertain Vector Optimization Problems [J].
Anh, Lam Quoc ;
Thuy, Vo Thi Mong ;
Zhao, Xiaopeng .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 205 (01)
[35]   SCALARIZATIONS AND LAGRANGE MULTIPLIERS FOR APPROXIMATE SOLUTIONS IN THE VECTOR OPTIMIZATION PROBLEMS WITH SET-VALUED MAPS [J].
Gao, Ying ;
Yang, Xinmin ;
Yang, Jin ;
Yan, Hong .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (02) :673-683
[36]   Approximate Solutions to Nonsmooth Multiobjective Programming Problems [J].
Golestani, Mohammad .
MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (01) :119-130
[37]   Optimality Conditions of the Approximate Efficiency for Nonsmooth Robust Multiobjective Fractional Semi-Infinite Optimization Problems [J].
Gao, Liu ;
Yu, Guolin ;
Han, Wenyan .
AXIOMS, 2023, 12 (07)
[38]   Approximate Proper Efficiency for Multiobjective Optimization Problems [J].
Gao, Ying ;
Xu, Zhihui .
FILOMAT, 2019, 33 (18) :6091-6101
[39]   Optimality and Duality for Robust Nonsmooth Semidefinite Multiobjective Programming Problems Using Convexificators [J].
Upadhyay, Balendu Bhooshan ;
Singh, Shubham Kumar ;
Stancu-Minasian, Ioan .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025,
[40]   Higher-order Optimality Conditions and Duality for Approximate Solutions in Non-convex Set-valued Optimization [J].
Yu, Guo-lin ;
Gong, Tian-tian .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (03) :620-628