On approximate solutions for robust convex semidefinite optimization problems

被引:0
作者
Jae Hyoung Lee
Gue Myung Lee
机构
[1] Pukyong National University,Department of Applied Mathematics
来源
Positivity | 2018年 / 22卷
关键词
Robust semidefinite optimization problem; -Solution; Robust optimization approach; -Optimality conditions; -Duality theorems; 90C25; 90C29; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider approximate solutions (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions) for a convex semidefinite programming problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we prove an approximate optimality theorem and approximate duality theorems for ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions in robust convex semidefinite programming problem under the robust characteristic cone constraint qualification. Moreover, an example is given to illustrate the obtained results.
引用
收藏
页码:845 / 857
页数:12
相关论文
共 50 条
  • [21] Optimality Conditions for Approximate Solutions of Set Optimization Problems with the Minkowski Difference
    Zhang, Yuhe
    Wang, Qilin
    [J]. AXIOMS, 2023, 12 (10)
  • [22] Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure
    Soleimani, Behnam
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (02) : 605 - 632
  • [23] Approximate Weak Minimal Solutions of Set-Valued Optimization Problems
    Khoshkhabar-amiranloo, S.
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (03) : 673 - 692
  • [24] Approximate Weak Minimal Solutions of Set-Valued Optimization Problems
    S. Khoshkhabar-amiranloo
    [J]. Journal of the Operations Research Society of China, 2023, 11 : 673 - 692
  • [25] ON WEIGHTED ROBUST APPROXIMATE SOLUTIONS FOR SEMI-INFINITE OPTIMIZATION WITH UNCERTAIN DATA
    Sun, Xiangkai
    Mo, Xiaoqing
    Teo, Kok Lay
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (11) : 2507 - 2524
  • [26] OPTIMALITY CONDITIONS FOR APPROXIMATE SOLUTIONS OF VECTOR OPTIMIZATION PROBLEMS WITH VARIABLE ORDERING STRUCTURES
    Soleimani, B.
    Tammer, C.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (07): : 5 - 23
  • [27] ON SECOND-ORDER CONIC PROGRAMMING DUALS FOR ROBUST CONVEX QUADRATIC OPTIMIZATION PROBLEMS
    Zhang, Huan
    Sun, Xiangkai
    Li, Genghua
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (11) : 8114 - 8128
  • [28] OPTIMALITY CONDITIONS FOR SPECIAL SEMIDEFINITE BILEVEL OPTIMIZATION PROBLEMS
    Dempe, Stephan
    Kue, Floriane Mefo
    Mehlitz, Patrick
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1564 - 1587
  • [29] Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems
    Gutierrez, C.
    Huerga, L.
    Novo, V.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1046 - 1058
  • [30] Approximate solutions of vector optimization problems via improvement sets in real linear spaces
    Gutierrez, C.
    Huerga, L.
    Jimenez, B.
    Novo, V.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (04) : 875 - 901