On approximate solutions for robust convex semidefinite optimization problems

被引:0
|
作者
Jae Hyoung Lee
Gue Myung Lee
机构
[1] Pukyong National University,Department of Applied Mathematics
来源
Positivity | 2018年 / 22卷
关键词
Robust semidefinite optimization problem; -Solution; Robust optimization approach; -Optimality conditions; -Duality theorems; 90C25; 90C29; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider approximate solutions (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions) for a convex semidefinite programming problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we prove an approximate optimality theorem and approximate duality theorems for ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solutions in robust convex semidefinite programming problem under the robust characteristic cone constraint qualification. Moreover, an example is given to illustrate the obtained results.
引用
收藏
页码:845 / 857
页数:12
相关论文
共 50 条
  • [1] On approximate solutions for robust convex semidefinite optimization problems
    Lee, Jae Hyoung
    Lee, Gue Myung
    POSITIVITY, 2018, 22 (03) : 845 - 857
  • [2] On semidefinite programming relaxations for a class of robust SOS-convex polynomial optimization problems
    Xiangkai Sun
    Jiayi Huang
    Kok Lay Teo
    Journal of Global Optimization, 2024, 88 : 755 - 776
  • [3] On semidefinite programming relaxations for a class of robust SOS-convex polynomial optimization problems
    Sun, Xiangkai
    Huang, Jiayi
    Teo, Kok Lay
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (03) : 755 - 776
  • [4] On approximate solutions of nondifferentiable vector optimization problems with cone-convex objectives
    Hong, Zhe
    Piao, Guang-Ri
    Kim, Do Sang
    OPTIMIZATION LETTERS, 2019, 13 (04) : 891 - 906
  • [5] On Approximate Efficiency for Nonsmooth Robust Vector Optimization Problems
    Tadeusz Antczak
    Yogendra Pandey
    Vinay Singh
    Shashi Kant Mishra
    Acta Mathematica Scientia, 2020, 40 : 887 - 902
  • [6] Some Characterizations of Approximate Solutions for Robust Semi-infinite Optimization Problems
    Sun, Xiangkai
    Teo, Kok Lay
    Long, Xian-Jun
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 191 (01) : 281 - 310
  • [7] On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems
    Khantree, Chanoksuda
    Wangkeeree, Rabian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 417 - 426
  • [8] Approximate solutions of multiobjective optimization problems
    Chuong, Thai Doan
    Kim, Do Sang
    POSITIVITY, 2016, 20 (01) : 187 - 207
  • [9] Approximate solutions of multiobjective optimization problems
    Thai Doan Chuong
    Do Sang Kim
    Positivity, 2016, 20 : 187 - 207
  • [10] On Efficient Solutions for Semidefinite Linear Fractional Vector Optimization Problems
    Kim, Moon Hee
    Lee, Gue Myung
    MINIMAX THEORY AND ITS APPLICATIONS, 2024, 9 (02): : 341 - 356