Agler-Commutant Lifting on an Annulus

被引:0
作者
Scott McCullough
Saida Sultanic
机构
[1] University of Florida,Department of Mathematics
[2] Sarajevo School of Science and Technology,undefined
来源
Integral Equations and Operator Theory | 2012年 / 72卷
关键词
Primary 47A20; Secondary 47A48; 47A57; 47B32; Commutant lifting; Agler–Schur class; annulus;
D O I
暂无
中图分类号
学科分类号
摘要
This note presents a commutant lifting theorem (CLT) of Agler type for the annulus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb A}$$\end{document} . Here the relevant set of test functions are the minimal inner functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb A}$$\end{document} —those analytic functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb A}$$\end{document} which are unimodular on the boundary and have exactly two zeros in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb A}$$\end{document} —and the model space is determined by a distinguished member of the Sarason family of kernels over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb A}$$\end{document} . The ideas and constructions borrow freely from the CLT of Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) for the polydisc, and Ambrozie and Eschmeier (A commutant lifting theorem on analytic polyhedra. Topological algebras, their applications, and related topics, 83108, Banach Center Publications, vol 67. Polish Academy of Sciences, Warsaw, 2005) for the ball in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C^n}$$\end{document} , as well as generalizations of the de Branges–Rovnyak construction like found in Agler (On the representation of certain holomorphic functions defined on a polydisc. Topics in operator theory: Ernst D. Hellinger memorial volume, operator theory: advances and applications, vol 48. Birkhäuser, Basel, pp 47–66, 1990) and Ambrozie et al. (J Oper Theory 47(2):287–302, 2002). It offers a template for extending the result in McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) to infinitely many test functions. Among the needed new ingredients is the formulation of the factorization implicit in the statement of the results in Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) and McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) in terms of certain functional Hilbert spaces of Hilbert space valued functions.
引用
收藏
页码:449 / 482
页数:33
相关论文
共 38 条
  • [1] Abrahamse M.B.(1979)The Pick interpolation theorem for finitely connected domains Michigan Math. J. 26 195-203
  • [2] Abrahamse M.B.(1976)A class of subnormal operators related to multiply-connected domains Adv. Math. 19 106-148
  • [3] Douglas R.G.(2002)Operator tuples and analytic models over general domains in J. Oper. Theory 47 287-302
  • [4] Ambrozie C.-G.(1982)The Arveson extension theorem and coanalytic models Integral Equ. Oper. Theory 5 608-631
  • [5] Englis M.(1999)Nevanlinna–Pick interpolation on the bidisk J. Reine Angew. Math. 506 191-204
  • [6] Müller V.(2000)Complete Nevanlinna–Pick kernels J. Funct. Anal. 175 111-124
  • [7] Agler J.(2004)Remarks on the operator-valued interpolation for multivariable bounded analytic functions Indiana Univ. Math. J. 53 1551-1576
  • [8] Agler J.(2004)Realization and interpolation for Schur–Agler-class functions on domains with matrix polynomial defining function in J. Funct. Anal. 213 45-87
  • [9] McCarthy J.E.(1999)A commutant lifting theorem on the polydisc Indiana Univ. Math. J. 48 653-675
  • [10] Agler J.(1998)Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna–Pick interpolation in several variables J. Funct. Anal. 157 1-61