Radiative transfer code for the thermal and near-infrared regions with multiple scattering

被引:6
作者
Zadvornykh I.V. [1 ]
Gribanov K.G. [1 ]
Zakharov V.I. [1 ]
Imasu R. [2 ]
机构
[1] Institute of Natural Sciences, Ural Federal University, Yekaterinburg
[2] Atmosphere and Ocean Research Institute, University of Tokyo, Chiba
基金
俄罗斯基础研究基金会;
关键词
GOSAT; multiple scattering; radiative transfer; remote sensing;
D O I
10.1134/S1024856017040145
中图分类号
学科分类号
摘要
FIRE-ARMS software was supplemented with the vector radiative transfer model VLIDORT. The new version of the software allows simulating outgoing thermal infrared radiation (TIR) from the Earth and solar shortwave infrared radiation (SWIR) reflected from the surface taking into account multiple scattering for the same atmospheric model and sensing geometry. We performed simulations of the spectra of outgoing TIR and SWIR radiation with multiple scattering in a cloudless atmosphere and compared them with the spectra measured by GOSAT satellite spectrometers in the cloudless atmosphere over Western Siberia. Analysis of calculated weighting functions shows that simultaneous use of the TIR and SWIR spectral regions will improve the height resolution in vertical profiling of methane concentrations in the atmosphere. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:305 / 310
页数:5
相关论文
共 25 条
[1]  
Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Climate Change 2013: The Physical Science Basis. The 5th Assessment Report of the IPCC, (2013)
[2]  
Atmospheric Infrared Sounder: Mission & Instrument
[3]  
Tashkun S.A., Perevalov V.I., Teffo J.L., CDSD-IASI, the high precision Carbon Dioxide Spectroscopic Databank: Version for METOP-IASI mission, Proc. ASA Int. Workshop, Reims, France, September 6–8, 2005, (2005)
[4]  
Bovensmann H., Burrows J.P., Buchwitz M., Frerick J., Noel S., Rozanov V.V., SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 2, pp. 125-127, (1999)
[5]  
Kuze A., Suto H., Nakajima M., Hamazaki T., Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring, Appl. Opt., 48, 35, pp. 6716-6733, (2009)
[6]  
Matsunaga T., Yokota T., Maksyutov S., Morino I., Yoshida Y., Saito M., Ajiro M., Uchino O., The statuses of GOSAT and GOSAT-2 projects at National Institute for Environmental Studies (NIES), Geophysical Research Abstracts, EGU General Assembly 2015, (2016)
[7]  
Nakajima M., Suto H., Yotsumoto K., Miyakawa T., Shiomi K., GOSAT-2: Development status of the mission instruments, Geophysical Research Abstracts, EGU General Assembly 2015, (2016)
[8]  
O'Dell C., The first eighteen months of NASA’s Orbiting Carbon Observatory-2 (OCO-2): Mission status, error characterization, and preliminary results, Geophysical Research Abstracts, EGU General Assembly 2016, (2016)
[9]  
Rogers C.D., Inverse Methods for Atmospheric Sounding. Theory and Practice, (2000)
[10]  
Christi M.J., Stephens G.L., Retrieving profiles of atmospheric CO<sub>2</sub> in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study, J. Geophys. Res., 109, D04316, pp. 1-11, (2004)