Defective Ramsey Numbers and Defective Cocolorings in Some Subclasses of Perfect Graphs

被引:0
作者
Yunus Emre Demirci
Tınaz Ekim
Mehmet Akif Yıldız
机构
[1] Boğaziçi University,Department of Mathematics
[2] Boğaziçi University,Department of Industrial Engineering
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Efficient graph generation; Perfect graphs; Chordal graphs; Bipartite graphs; Cographs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a variant of Ramsey numbers called defective Ramsey numbers where cliques and independent sets are generalized to k-dense and k-sparse sets, both commonly called k-defective sets. We focus on the computation of defective Ramsey numbers restricted to some subclasses of perfect graphs. Since direct proof techniques are often insufficient for obtaining new values of defective Ramsey numbers, we provide a generic algorithm to compute defective Ramsey numbers in a given target graph class. We combine direct proof techniques with our efficient graph generation algorithm to compute several new defective Ramsey numbers in perfect graphs, bipartite graphs and chordal graphs. We also initiate the study of a related parameter, denoted by ckG(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^{{\mathcal {G}}}_k(m)$$\end{document}, which is the maximum order n such that the vertex set of any graph of order n in a class G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} can be partitioned into at most m subsets each of which is k-defective. We obtain several values for ckG(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^{{\mathcal {G}}}_k(m)$$\end{document} in perfect graphs and cographs.
引用
收藏
相关论文
共 37 条
  • [1] Akdemir A(2015)Advances in defective parameters in graphs Discrete Optim 16 62-69
  • [2] Ekim T(2014)Graph classes and Ramsey numbers Discrete Appl Math 173 16-27
  • [3] Belmonte R(2006)The strong perfect graph theorem Ann. Math. 164 51-229
  • [4] Heggernes P(1999)On 1-dependent Ramsey numbers for graphs Discuss. Math. Graph Theory 19 93-110
  • [5] van’t Hof P(1981)Complement reducible graphs Discrete Appl. Math. 3 163-174
  • [6] Rafiey A(2021)Exact values of defective Ramsey numbers in graph classes Discrete Optim. 42 1-12
  • [7] Saei R(2011)Some defective parameters in graphs Graphs Combin. 3 579-585
  • [8] Chudnovsky M(2019)Small 1-defective Ramsey numbers in perfect graphs Discrete Optim. 34 254-269
  • [9] Robertson N(1991)Some extremal results in cochromatic and dichromatic theory J. Graph Theory 15 61-71
  • [10] Seymour P(1984)Independence in graphs with maximum degree four J. Combin. Theory Ser. B 37 835-855