Multinomial mixture model with heterogeneous classification probabilities

被引:0
|
作者
Mark D. Holland
Brian R. Gray
机构
[1] University of Minnesota,School of Statistics
[2] Upper Midwest Environmental Sciences Center,United States Geological Survey
来源
Environmental and Ecological Statistics | 2011年 / 18卷
关键词
Abundance index; Classification probability; Detection probability; Latent class model; Population index; Site occupancy; Submersed aquatic vegetation;
D O I
暂无
中图分类号
学科分类号
摘要
Royle and Link (Ecology 86(9):2505–2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data.
引用
收藏
页码:257 / 270
页数:13
相关论文
共 50 条
  • [1] Multinomial mixture model with heterogeneous classification probabilities
    Holland, Mark D.
    Gray, Brian R.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2011, 18 (02) : 257 - 270
  • [2] Application of multinomial mixture model to text classification
    Novovicová, J
    Malík, A
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2003, 2652 : 646 - 653
  • [3] ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data
    Osmala, Maria
    Eraslan, Gokcen
    Lahdesmaki, Harri
    BIOINFORMATICS, 2022, 38 (16) : 3863 - 3870
  • [4] On multisample multinomial mixture model
    Malyutov, M.B.
    Stolyarenko, D.A.
    American Journal of Mathematical and Management Sciences, 2001, 21 (1-2) : 101 - 107
  • [6] Estimation of multinomial probabilities under a model constraint
    Gupta, AK
    Saleh, AKME
    JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 58 (02) : 151 - 161
  • [7] Penalized multinomial mixture logit model
    Shaheena Bashir
    Edward M. Carter
    Computational Statistics, 2010, 25 : 121 - 141
  • [8] Penalized multinomial mixture logit model
    Bashir, Shaheena
    Carter, Edward M.
    COMPUTATIONAL STATISTICS, 2010, 25 (01) : 121 - 141
  • [9] ESTIMATION OF MULTINOMIAL PROBABILITIES
    ALAM, K
    ANNALS OF STATISTICS, 1979, 7 (02): : 282 - 283
  • [10] Estimating multinomial probabilities
    Kunte, S
    Upadhya, KS
    AMERICAN STATISTICIAN, 1996, 50 (03): : 214 - 216