More Mixed Volume Preserving Curvature Flows

被引:0
作者
James A. McCoy
机构
[1] University of Wollongong,Institute for Mathematics and Its Applications
来源
The Journal of Geometric Analysis | 2017年 / 27卷
关键词
Curvature flow; Parabolic partial differential equation; Hypersurface; Mixed volume; Axial symmetry; 35K55; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the results of McCoy (Calc Var Partial Differ Equ 24:131–154, 2005) to include several new cases where convex surfaces evolve to spheres under mixed volume preserving curvature flows, using recent results for unconstrained curvature flows and new regularity arguments in the constrained flow setting. We include results for speeds that are degree 1 homogeneous in the principal curvatures and indicate how, with sufficient curvature pinching conditions on the initial hypersurfaces, some results may be extended to speed homogeneous of degree α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}. In particular, these extensions require lower speed bounds that are obtained here without using estimates for equations of porous medium type, in contrast to most previous work.
引用
收藏
页码:3140 / 3165
页数:25
相关论文
共 47 条
[1]  
Alessandroni R(2010)Evolution of hypersurfaces by powers of the scalar curvature Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 541-571
[2]  
Sinestrari C(1994)Contraction of convex hypersurfaces in Euclidean space Calc. Var. Partial Differ. Equ. 2 151-171
[3]  
Andrews BH(1994)Harnack inequalities for evolving hypersurfaces Math. Z. 217 179-197
[4]  
Andrews BH(2000)Motion of hypersurfaces by Gauss curvature Pac. J. Math. 195 1-34
[5]  
Andrews BH(2001)Volume-preserving anisotropic mean curvature flow Indiana Univ. Math. J. 50 783-827
[6]  
Andrews BH(2007)Pinching estimates and motion of hypersurfaces by curvature functions J. Reine Angew. Math. 608 17-33
[7]  
Andrews BH(2010)Moving surfaces by non-concave curvature functions Calc. Var. Partial Differ. Equ. 39 649-657
[8]  
Andrews BH(2012)Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature Trans. Am. Math. Soc. 364 3427-3447
[9]  
Andrews BH(2013)Contracting convex hypersurfaces by curvature Calc. Var. Partial Differ. Equ. 47 611-665
[10]  
McCoy JA(2012)Convergence of axially symmetric volume preserving mean curvature flow Pac. J. Math. 259 41-54