On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_a \cup \beta K_b } $$ \end{document}

被引:0
作者
Mirko Lepović
机构
关键词
05C50; Graph; eigenvalue; Diophantine equation;
D O I
10.1007/BF02936097
中图分类号
学科分类号
摘要
LetG be a simple graph and let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar G$$ \end{document} denotes its complement. We say thatG is integral if its spectrum consists entirely of integers. If\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_a \cup \beta K_b } $$ \end{document} is integral we show that it belongs to the class of integral graphs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {[\frac{{kt}}{\tau }x_o + \frac{{mt}}{\tau }z]K(t + \ell n)k + \ell m \cup [\frac{{kt}}{\tau }y_o + \frac{{(t + \ell n)k + \ell m}}{\tau }z]nK\ell m,} $$ \end{document} where (i) t, k, l, m, n ∈ ℕ such that (m, n) =1, (n, t) =1 and (l, t)=1; (ii) τ=((t+ln)k+lm, mt) such that τ| kt; (iii) (x0, y0) is aparticular solution of the linear Diophantine equation ((t+ln)k+lm)x-(mt)y=τ and (iv) z≥z0 where z0 is the least integer such that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\frac{{kt}}{\tau }x_0 + \frac{{mt}}{\tau }z_0 ) \geqslant 1$$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\frac{{kt}}{\tau }y_0 + \frac{{(t + \ell n)k + \ell m}}{\tau }z_0 ) \geqslant 1$$ \end{document}.
引用
收藏
页码:39 / 49
页数:10
相关论文
共 1 条
  • [1] Lepović M.(2001)Some results on graphs with exactly two main eigenvalues Univ. Beograd Publ. Elektro-tehn. Fak. (Ser. Mat.) 12 68-84