LetG be a simple graph and let\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\bar G$$
\end{document} denotes its complement. We say thatG is integral if its spectrum consists entirely of integers. If\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\overline {\alpha K_a \cup \beta K_b } $$
\end{document} is integral we show that it belongs to the class of integral graphs\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\overline {[\frac{{kt}}{\tau }x_o + \frac{{mt}}{\tau }z]K(t + \ell n)k + \ell m \cup [\frac{{kt}}{\tau }y_o + \frac{{(t + \ell n)k + \ell m}}{\tau }z]nK\ell m,} $$
\end{document} where (i) t, k, l, m, n ∈ ℕ such that (m, n) =1, (n, t) =1 and (l, t)=1; (ii) τ=((t+ln)k+lm, mt) such that τ| kt; (iii) (x0, y0) is aparticular solution of the linear Diophantine equation ((t+ln)k+lm)x-(mt)y=τ and (iv) z≥z0 where z0 is the least integer such that\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(\frac{{kt}}{\tau }x_0 + \frac{{mt}}{\tau }z_0 ) \geqslant 1$$
\end{document} and\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(\frac{{kt}}{\tau }y_0 + \frac{{(t + \ell n)k + \ell m}}{\tau }z_0 ) \geqslant 1$$
\end{document}.