On the Existence of G-Permutable Subgroups in Alternating Groups

被引:0
作者
N. Yang
A. Galt
机构
[1] Jiangnan University,School of Science
[2] Sobolev Institute of Mathematics,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Finite group; Alternating group; -permutable subgroup; 20D05; 20B05;
D O I
暂无
中图分类号
学科分类号
摘要
Recall that a subgroup A of a group G is called G-permutable in G if for every subgroup B of G there exists an element x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in G$$\end{document} such that A and Bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^x$$\end{document} commute. The following question was posed in the Kourovka Notebook: is there an integer n such that for all m>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>n$$\end{document} the alternating group Am\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{A}\,}}_m$$\end{document} has no non-trivial Am\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{A}\,}}_m$$\end{document}-permutable subgroups? We give a positive answer to this question. Moreover, in the case of prime p we prove that Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{A}\,}}_p$$\end{document} has no non-trivial Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{A}\,}}_p$$\end{document}-permutable subgroups except p=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=5$$\end{document}.
引用
收藏
相关论文
共 23 条
  • [1] Ore O(1939)Contributions in the theory of groups of finite order Duke Math. J. 5 431-460
  • [2] Stonehewer SE(1972)Permutable subgroups of infinite groups Math. Z. 125 1-16
  • [3] Ito N(1962)Über die Quasinormalteiler von endlichen Gruppen Acta Sci. Math. 23 168-170
  • [4] Szep J(2007)-quasinormal subgroups Sib. Math. J. 48 593-605
  • [5] Guo W(2007)-semipermutable subgroups of finite groups J. Algebra 315 31-41
  • [6] Skiba AN(2012)Alternating groups with hereditarily Izv. F. Skorina Gomel State Univ. 5 148-150
  • [7] Shum KP(2008)-permutable subgroup Vestnik Polotsk State Univ. 3 23-29
  • [8] Guo W(2022)On hereditarily Sib. Math. J. 63 691-698
  • [9] Skiba AN(1987)-permutable subgroups of sporadic groups J. Algebra 111 365-383
  • [10] Shum KP(2015)On the existence of J. Algebra 423 318-374