Affine Phase Retrieval for Sparse Signals via ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} Minimization

被引:0
作者
Meng Huang
Shixiang Sun
Zhiqiang Xu
机构
[1] Beihang University,School of Mathematical Sciences
[2] Chinese Academy of Sciences,LSEC, ICMSEC, Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Phase retrieval; Sparse signals; Compressed sensing; 94A12; 60B20;
D O I
10.1007/s00041-023-10022-6
中图分类号
学科分类号
摘要
Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} minimization to exploit the sparsity of signals for affine phase retrieval, showing that O(klog(en/k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k\log ( en/k))$$\end{document} Gaussian random measurements are sufficient to recover all k-sparse signals by solving a natural ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} minimization program, where n is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} minimization program for affine phase retrieval is stable.
引用
收藏
相关论文
共 89 条
  • [1] Balan R(2006)On signal reconstruction without phase Appl. Comput. Harmon. Anal. 20 345-356
  • [2] Casazza P(2019)Holographic phase retrieval and reference design Inverse Probl. 35 1169-1198
  • [3] Edidin D(2015)Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes J. Fourier Anal. Appl. 21 505-525
  • [4] Barmherzig DA(2018)Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain Appl. Comput. Harmon. Anal. 45 106-125
  • [5] Sun J(2014)Saving phase: injectivity and stability for phase retrieval Appl. Comput. Harmon. Anal. 37 60-84
  • [6] Li PN(2022)Solving phase retrieval with random initial guess is nearly as good as by spectral initialization Appl. Comput. Harmon. Anal. 58 122-132
  • [7] Lane TJ(2013)Sparse representation of a polytope and recovery of sparse signals and low-rank matrices IEEE Trans. Inf. Theory 60 1985-2007
  • [8] Candès EJ(2015)Phase retrieval via Wirtinger flow: theory and algorithms IEEE Trans. Inf. Theory 61 822-883
  • [9] Beinert R(2017)Solving random quadratic systems of equations is nearly as easy as solving linear systems Commun. Pure Appl. Math. 70 644-660
  • [10] Plonka G(2019)The geometry of ambiguity in one-dimensional phase retrieval SIAM J. Appl. Algebr. Geom. 3 473-494