Geometry and Identity Theorems for Bicomplex Functions and Functions of a Hyperbolic Variable

被引:0
作者
Maria Elena Luna–Elizarrarás
Marco Panza
Michael Shapiro
Daniele Carlo Struppa
机构
[1] HIT - Holon Institute of Technology,The Donald Bren Presidential Chair in Mathematics
[2] CNRS,undefined
[3] IHPST (CNRS and Univ. of Patis 1,undefined
[4] Panthéon-Sorbonne),undefined
[5] Chapman University,undefined
[6] Chapman University,undefined
来源
Milan Journal of Mathematics | 2020年 / 88卷
关键词
Identity theorems; bicomplex numbers; hyperbolic numbers; bicomplex functions; functions of hyperbolic variables; Primary 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document} be the two-dimensional real algebra generated by 1 and by a hyperbolic unit k such that k2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{2} = 1$$\end{document}. This algebra is often referred to as the algebra of hyperbolic numbers. A function f:D→D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : \mathbb{D} \rightarrow \mathbb{D}$$\end{document} is called D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document}-holomorphic in a domain Ω⊂D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb{D}$$\end{document} if it admits derivative in the sense that limh→0f(z0+h)-f(z0)h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm lim}_{h\rightarrow{0}}\frac{f({\mathfrak{z}_{0}+h)} -f{(\mathfrak{z}_{0})}} {h}$$\end{document} exists for every point z0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{z}_0$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document}, and when h is only allowed to be an invertible hyperbolic number. In this paper we prove that D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document}-holomorphic functions satisfy an unexpected limited version of the identity theorem. We will offer two distinct proofs that shed some light on the geometry of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document}. Since hyperbolic numbers are naturally embedded in the four-dimensional algebra of bicomplex numbers, we use our approach to state and prove an identity theorem for the bicomplex case as well.
引用
收藏
页码:247 / 261
页数:14
相关论文
共 5 条
  • [1] Cerroni C(2017)From the theory of “congeneric surd equation” to “Segre's bicomplex numbers” Historia Math. 44 232-251
  • [2] Cockle J(1848)On Certain Functions Resembling Quaternions and on a New Imaginary in Algebra The London, Edinburgh and Dublin philosophical magazine and journal of science, S. 3 435-439
  • [3] Cockle J(1849)On a new imaginary in algebra The London, Edinburgh and Dublin philosophical magazine and journal of science, S. 3 37-47
  • [4] Cockle J(1849)Horæ Algebricæ, XII (Conclusion) The Mechanics' Magazine 50 104-106
  • [5] Kisil VV(2007)Starting with the group Notices Amer. Math. Soc. 54 1458-1465