Finite groups with SS-supplement

被引:0
作者
Quanfu Yan
Xiaoxi Bao
Zhencai Shen
机构
[1] China Agricultural University,College of Science
来源
Monatshefte für Mathematik | 2017年 / 184卷
关键词
-quasinormal subgroups; -supplement subgroups; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group. A subgroup H of G is said to be SS-quasinormal in G if there is a subgroup K such that G=HK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=HK$$\end{document} and HS=SH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS=SH$$\end{document}, for all S∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in $$\end{document} Syl(K), where Syl(K) denotes the collection of all Sylow subgroups of K. A subgroup H of G is said to be SS-supplemented in G if there is a subgroup K such that G=HK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=HK$$\end{document} and H∩K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\cap K$$\end{document} is SS-quasinormal in G. In this paper, we investigate the SS-supplemented subgroups and strengthen a result of Skiba which gives a positive answer to an open question of Shemetkov.
引用
收藏
页码:325 / 333
页数:8
相关论文
共 14 条
  • [1] Gross F(1987)Conjugacy of odd order Hall subgroups Bull. Lond. Math. Soc. 19 311-319
  • [2] Guo W(2015)Finite groups with generalized Ore supplement conditions for primary subgroups J. Algebra 432 205-227
  • [3] Skiba AN(2008)The influence of J. Algebra 319 4275-4287
  • [4] Li S(2010)-quasinormality of some subgroups on the structure of finite groups J. Group Theory. 13 841-850
  • [5] Shen Z(2007)On two questions of Shemetkov concerning hypercyclically embedded subgroups of finite groups J. Algebra 315 192-209
  • [6] Liu J(2009)On weakly J. Algebra 322 2106-2117
  • [7] Liu X(2014)-permutable subgroups of finite groups Math. Notes. 95 300-311
  • [8] Skiba AN(undefined)On the undefined undefined undefined-undefined
  • [9] Skiba AN(undefined)-hypercentre of finite groups undefined undefined undefined-undefined
  • [10] Shemetkov LA(undefined)On undefined undefined undefined-undefined