Nash equilibrium in differential games and the quasi-strategy formalism

被引:0
|
作者
Yu. V. Averboukh
机构
[1] Russian Academy of Sciences,Institute of Mathematics and Mechanics, Ural Branch
[2] Ural Federal University,undefined
来源
Automation and Remote Control | 2014年 / 75卷
关键词
Nash Equilibrium; Remote Control; NASH; Generalize Control; Differential Game;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a two-player nonzero-sum differential game in the case where players use nonanticipative strategies. We define the Nash equilibrium in this case and obtain a characterization of Nash equilibrium strategies. We show that a Nash equilibrium solution can be approximately realized by control-with-guide strategies.
引用
收藏
页码:1491 / 1502
页数:11
相关论文
共 50 条
  • [21] The Nash Equilibrium With Inertia in Population Games
    Gentile, Basilio
    Paccagnan, Dario
    Ogunsula, Bolutife
    Lygeros, John
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 5742 - 5755
  • [22] Generalized quantum games with Nash Equilibrium
    Liu, XF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (04) : 553 - 556
  • [23] On the existence of Nash equilibrium in discontinuous games
    Nessah, Rabia
    Tian, Guoqiang
    ECONOMIC THEORY, 2016, 61 (03) : 515 - 540
  • [24] Nash equilibrium in games with incomplete preferences
    Bade, S
    ECONOMIC THEORY, 2005, 26 (02) : 309 - 332
  • [25] On the existence of Nash equilibrium in discontinuous games
    Rabia Nessah
    Guoqiang Tian
    Economic Theory, 2016, 61 : 515 - 540
  • [26] Nash equilibrium in games with incomplete preferences
    Sophie Bade
    Economic Theory, 2005, 26 : 309 - 332
  • [27] OPTIMAL STOPPING GAMES AND NASH EQUILIBRIUM
    Peskir, G.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (03) : 558 - 571
  • [28] Interperceptional equilibrium as a generalization of Nash equilibrium in games with interperception
    Inohara, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (06): : 625 - 638
  • [29] Probabilistic Tit-for-Tat Strategy versus Nash equilibrium for Infinitely Repeated Games
    Madhumidha, K.
    Vijayarangan, N.
    Padmanabhan, K.
    Satish, B.
    Kartick, N.
    Ganesan, Viswanath
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 168 - 173
  • [30] Mixed Strategy Nash Equilibrium for Scheduling Games on Batching-Machines with Activation Cost
    Zhang, Long
    Wang, Zhiwen
    Wang, Jingwen
    Du, Donglei
    Luo, Chuanwen
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (02): : 519 - 527