L-functions of certain exponential sums over finite fields

被引:0
作者
Chao Chen
Xin Lin
机构
[1] University of California,Department of Mathematics
[2] Irvine,Department of Mathematics
[3] Shanghai Maritime University,undefined
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
Exponential sums; L-function; Laurent polynomials; Newton polygon; Hodge polygon; Decomposition theory; Weight computation; Primary 11S40; 11T23; 11L07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we completely determine the slopes and weights of the L-functions of an important class of exponential sums arising from analytic number theory. Our main tools include Adolphson–Sperber’s work on toric exponential sums and Wan’s decomposition theorems. One consequence of our main result is a sharp estimate of these exponential sums. Another consequence is to obtain an explicit counterexample of Adolphson–Sperber’s conjecture on weights of toric exponential sums.
引用
收藏
页码:1851 / 1871
页数:20
相关论文
共 17 条
  • [1] Adolphson A(1989)Exponential sums and Newton polyhedra: cohomology and estimates Ann. Math. (2) 130 367-406
  • [2] Sperber S(1990)Exponential sums on Invent. Math. 101 63-79
  • [3] Adolphson A(1985)Appendix: On some exponential sums Ann. Math. (2) 121 345-350
  • [4] Sperber S(1980)La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 52 137-252
  • [5] Birch BJ(1991)Weights of exponential sums, intersection cohomology, and Newton polyhedra Invent. Math. 106 275-294
  • [6] Bombieri E(1960)On the rationality of the zeta function of an algebraic variety Am. J. Math. 82 631-648
  • [7] Deligne P(1962)On the zeta function of a hypersurface Inst. Hautes Études Sci. Publ. Math. 12 5-68
  • [8] Denef J(1985)Incomplete Kloosterman sums and a divisor problem Ann. Math. (2) 121 319-344
  • [9] Loeser J(1986)The divisor function Acta Arith. 47 29-56
  • [10] Dwork B(1993) in arithmetic progressions Ann. Math. (2) 137 249-293