Duality relations in the nonlinear percolation problem: Theory and numerical simulation

被引:0
作者
V. E. Arkhincheev
B. A. Garmaev
机构
[1] Russian Academy of Sciences,Buryat Science Center, Siberian Division
[2] Ulan-Ude,undefined
来源
Journal of Experimental and Theoretical Physics | 2001年 / 92卷
关键词
Spectroscopy; State Physics; Field Theory; Elementary Particle; Quantum Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of a nonlinear current flow in a heterophase medium formed by a random mixture of linear and nonlinear phases is investigated. The duality relation is derived for the critical indices describing the effective response of a heterogeneous system. The critical index is calculated at the percolation threshold (for equal concentrations of the phases). The nonlinear percolation problem is simulated numerically for degrees k = 3, 5, and 7 of the nonlinear phase. The existence of a duality relation for critical indices is established in a range of phase concentrations.
引用
收藏
页码:514 / 518
页数:4
相关论文
共 33 条
  • [1] Keller J. B.(1964)undefined J. Math. Phys. 5 548-undefined
  • [2] Dykhne A. M.(1970)undefined Zh. Éksp. Teor. Fiz. 59 110-undefined
  • [3] Stroud D.(1989)undefined Phys. Rev. B 37 8719-undefined
  • [4] Hui P. M.(1988)undefined Phys. Rev. B 39 4598-undefined
  • [5] Bergman D. J.(1995)undefined Dokl. Akad. Nauk 345 467-undefined
  • [6] Dykhne A. M.(1995)undefined Pis’ma Zh. Tekh. Fiz. 21 3-undefined
  • [7] Zosimov V. V.(1986)undefined Phys. Rev. Lett. 57 3097-undefined
  • [8] Rybak S. A.(1991)undefined Phys. Rev. B 44 6773-undefined
  • [9] Snarskii A. A.(1989)undefined Phys. Rev. B 39 6807-undefined
  • [10] Gefen Y.(1997)undefined Pis’ma Zh. Éksp. Teor. Fiz. 65 521-undefined