Assembling integrable σ-models as affine Gaudin models

被引:0
作者
F. Delduc
S. Lacroix
M. Magro
B. Vicedo
机构
[1] Univ Lyon,II. Institut für Theoretische Physik
[2] Ens de Lyon,Zentrum für Mathematische Physik
[3] Univ Claude Bernard,Department of Mathematics
[4] CNRS,undefined
[5] Laboratoire de Physique,undefined
[6] Universität Hamburg,undefined
[7] Universität Hamburg,undefined
[8] University of York,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Integrable Field Theories; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We explain how to obtain new classical integrable field theories by assembling two affine Gaudin models into a single one. We show that the resulting affine Gaudin model depends on a parameter γ in such a way that the limit γ → 0 corresponds to the decoupling limit. Simple conditions ensuring Lorentz invariance are also presented. A first application of this method for σ-models leads to the action announced in [1] and which couples an arbitrary number N of principal chiral model fields on the same Lie group, each with a Wess-Zumino term. The affine Gaudin model descriptions of various integrable σ-models that can be used as elementary building blocks in the assembling construction are then given. This is in particular used in a second application of the method which consists in assembling N − 1 copies of the principal chiral model each with a Wess-Zumino term and one homogeneous Yang-Baxter deformation of the principal chiral model.
引用
收藏
相关论文
共 21 条
  • [1] Vicedo Benoît(2015)Deformed integrableσ-models, classicalR-matrices and classical exchange algebra on Drinfel’d doubles Journal of Physics A: Mathematical and Theoretical 48 355203-460
  • [2] Maillet JM(1986)Hamiltonian Structures for Integrable Classical Theories From Graded Kac-Moody Algebras Phys. Lett. 167B 401-321
  • [3] Reyman A.G.(1988)Compatible poisson structures for lax equations: An r-matrix approach Physics Letters A 130 456-74
  • [4] Semenov-Tian-Shansky M.A.(2011)The classical R-matrix of AdS/CFT and its Lie dialgebra structure Lett. Math. Phys. 95 249-undefined
  • [5] Vicedo B(1971)Consequences of anomalous Ward identities Phys. Lett. 37B 95-undefined
  • [6] Wess J(1984)Nonabelian Bosonization in Two-Dimensions Commun. Math. Phys. 92 455-undefined
  • [7] Zumino B(2015)Integrable double deformation of the principal chiral model Nuclear Physics B 891 312-undefined
  • [8] Witten E(1984)Dual representations and ultraviolet divergences in nonlinear σ-models Physics Letters B 134 70-undefined
  • [9] Delduc F.(1985)Quantum Equivalence of Dual Field Theories Annals Phys. 162 31-undefined
  • [10] Magro M.(2014)Integrable Deformations of Strings on Symmetric Spaces JHEP 11 009-undefined