Criteria For The Existence Of Positive Solutions To The Equation ρ(x)Δu=u2 In \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}d For All \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d \geqslant 1$$ \end{document} — A New Probabilistic Approach

被引:0
作者
János Engländer
机构
[1] Weierstrass Institute for Applied Analysis and Stochastics,
关键词
measure-valued process; superprocess; diffusion process; log-Laplace equation; branching; -transform; positive solutions to nonlinear pde's;
D O I
10.1023/A:1009847108602
中图分类号
学科分类号
摘要
Consider the critical measure-valued process X(t,ċ) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}d corresponding to the evolution equation ut=ρ(x)Δu-u2. We prove that the maximal order of ρ(x) for having the compact support property for X is different for d=1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d \geqslant 2$$ \end{document}: it is O(x3) in one dimension and O(x2) in higher dimensions. These growth orders also turn out to be the maximal orders for the nonexistence of a nonnegative nonzero solution for
引用
收藏
页码:327 / 337
页数:10
相关论文
共 10 条
  • [1] Aronson D.G.(1968)Non-Negative Solutions of Linear Parabolic Equations Annali della Scuola Normale Superiore di Pisa XII 607-694
  • [2] Cheng K-S.(1992)On the structure of the conformal scalar curvature equation on ℝ Indiana Univ. Math. J. 41 261-278
  • [3] Ni W-M.(1999)On the construction and support properties of measure-valued diffusions on Ann. Probability 27 684-730
  • [4] Engländer J.(1985) with spatially dependent branching Proc. AMS 95 219-226
  • [5] Pinsky R.G.(1982)On the elliptic equation Indiana Univ. Math. J. 31 493-529
  • [6] Lin F-H.(1996) [ Math. Z. 223 569-586
  • [7] Ni W-M.(1996) ] – Ann. Probability 24 237-267
  • [8] Pinchover Y.(1995) = 0 Stochastic Processes Appl. 59 43-53
  • [9] Pinsky R.G.(undefined)On the elliptic equation Δ undefined undefined undefined-undefined
  • [10] Sheu Y.-C.(undefined) 0, its generalizations and applications in geometry undefined undefined undefined-undefined