Riordan Arrays and Difference Equations of Subdiagonal Lattice Paths

被引:0
作者
Chandragiri, S. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
Riordan array; difference equation; generating function; functional equation; lattice path; 517.962; MULTIPLE LAURENT SERIES; CATALAN NUMBERS;
D O I
10.1134/S0037446624020149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study lattice paths by combinatorial methods on the positive lattice. We give some identity that produces the functional equations and generating functions to counting the lattice paths on or below the main diagonal. Also, we consider the subdiagonal lattice paths in relation to lower triangular arrays. This presents a Riordan array in conjunction with the columns of the matrix of the coefficients of certain formal power series by implying an infinite lower triangular matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ F=(f_{x,y})_{x,y\geqslant 0} $\end{document}. We derive new combinatorial interpretations in terms of restricted lattice paths for some Riordan arrays.
引用
收藏
页码:411 / 425
页数:15
相关论文
共 50 条