A unified approach for the numerical solution of time fractional Burgers’ type equations

被引:0
作者
A. Esen
F. Bulut
Ö. Oruç
机构
[1] İnönü University,Department of Mathematics
[2] İnönü University,Department of Physics
来源
The European Physical Journal Plus | / 131卷
关键词
Error Norm; Fractional Order; Fractional Calculus; Collocation Point; Haar Wavelet;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a relatively new approach is devised for obtaining approximate solution of time fractional partial differential equations. Time fractional diffusion equation and time fractional Burgers-Fisher equation are solved with Haar wavelet method where fractional derivatives are Caputo derivative. Time discretization of the problems made by L1 discretization formula and space derivatives discretized by Haar series. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L_{2}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L_{\infty}$\end{document} error norms are used for measuring accuracy of the proposed method. Numerical results obtained with proposed method compared with exact solutions as well as with available results from the literature. The numerical results verify the feasibility of Haar wavelet combined with L1 discretization formula for the considered problems.
引用
收藏
相关论文
共 63 条
[1]  
Monami S.(2006)undefined Phys. Lett. A 355 271-undefined
[2]  
Odibat Z.(2002)undefined Nonlinear Dyn. 29 145-undefined
[3]  
Agrawal O.P.(2012)undefined Int. J. Bifurcat. Chaos 22 1250085-undefined
[4]  
Sun H.(2006)undefined J. Comput. Phys. 211 249-undefined
[5]  
Chen W.(2006)undefined J. Comput. Phys. 216 264-undefined
[6]  
Li C.(2005)undefined SIAM J. Numer. Anal. 42 1862-undefined
[7]  
Meerschaert M.M.(2011)undefined J. Comput. Nonlinear Dyn. 6 021014-undefined
[8]  
Scheffler H.P.(2012)undefined J. Fract. Calculus Appl. 2 1-undefined
[9]  
Tadjeran C.(2012)undefined J. Comput. Phys. 231 1743-undefined
[10]  
Yuste S.B.(2013)undefined Philos. Trans. R. Soc. A 371 2012268-undefined