Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement

被引:7
作者
Wu, Xinyi [1 ]
Hu, Zhongyuan [2 ]
Zhang, Yan [3 ]
Li, Mao [1 ,4 ]
Liao, Nanqiao [2 ]
Dong, Junyang [1 ,4 ]
Wang, Baogen [1 ,4 ]
Wu, Jian [1 ,4 ]
Wu, Xiaohua [1 ,4 ]
Wang, Ying [1 ,4 ]
Wang, Jian [1 ,4 ]
Lu, Zhongfu [1 ,4 ]
Yang, Yi [3 ]
Sun, Yuyan [1 ,4 ]
Dong, Wenqi [1 ,4 ]
Zhang, Mingfang [2 ,5 ,6 ]
Li, Guojing [1 ,4 ]
机构
[1] Zhejiang Acad Agr Sci, Inst Vegetables, State Key Lab Managing Biot & Chem Threats Qual &, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Agr & Biotechnol, Lab Vegetable Germplasm Innovat & Mol Breeding, Hangzhou, Peoples R China
[3] Guangdong Acad Agr Sci, Vegetable Res Inst, Guangdong Key Lab New Technol Res Vegetables, Guangzhou, Peoples R China
[4] Zhejiang Acad Agr Sci, Minist Agr & Rural Affairs, Key Lab Vegetable Legumes Germplasm Enhancement &, Hangzhou, Peoples R China
[5] Zhejiang Univ, Yazhou Bay Sci & Technol City, Hainan Inst, Sanya, Peoples R China
[6] Minist Agr & Rural Affairs, Key Lab Hort Plant Growth & Dev, Hangzhou, Peoples R China
关键词
PROVIDES INSIGHT; GENE-EXPRESSION; PROGRAM; PROTEIN; PACKAGE; STARCH; FAMILY; DISCOVERY; SEQUENCES; FRAMEWORK;
D O I
10.1038/s41588-024-01722-w
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas. High-quality genome assemblies of grain and vegetable cowpeas and re-sequencing of 344 accessions characterize genomic variations between cowpea subspecies and their domestication and improvement under selection.
引用
收藏
页码:992 / 1005
页数:22
相关论文
共 141 条
  • [41] Ira A., 2020, Legume Science, V2, DOI 10.1002/leg3.57
  • [42] Repbase update, a database of eukaryotic repetitive elements
    Jurka, J
    Kapitonov, VV
    Pavlicek, A
    Klonowski, P
    Kohany, O
    Walichiewicz, J
    [J]. CYTOGENETIC AND GENOME RESEARCH, 2005, 110 (1-4) : 462 - 467
  • [43] The genetics of domestication of the azuki bean (Vigna angulatis)
    Kaga, Akito
    Isemura, Takehisa
    Tomooka, Norihiko
    Vaughan, Duncan A.
    [J]. GENETICS, 2008, 178 (02) : 1013 - 1036
  • [44] Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence
    Kamal, Nadia
    Mun, Terry
    Reid, Dugald
    Lin, Jie-Shun
    Akyol, Turgut Yigit
    Sandal, Niels
    Asp, Torben
    Hirakawa, Hideki
    Stougaard, Jens
    Mayer, Klaus F. X.
    Sato, Shusei
    Andersen, Stig Uggerhoj
    [J]. DNA RESEARCH, 2020, 27 (03)
  • [45] Variance component model to account for sample structure in genome-wide association studies
    Kang, Hyun Min
    Sul, Jae Hoon
    Service, Susan K.
    Zaitlen, Noah A.
    Kong, Sit-yee
    Freimer, Nelson B.
    Sabatti, Chiara
    Eskin, Eleazar
    [J]. NATURE GENETICS, 2010, 42 (04) : 348 - U110
  • [46] Genomic insights into the origin, domestication and diversification of Brassica juncea
    Kang, Lei
    Qian, Lunwen
    Zheng, Ming
    Chen, Liyang
    Chen, Hao
    Yang, Liu
    You, Liang
    Yang, Bin
    Yan, Mingli
    Gu, Yuanguo
    Wang, Tianyi
    Schiessl, Sarah-Veronica
    An, Hong
    Blischak, Paul
    Liu, Xianjun
    Lu, Hongfeng
    Zhang, Dawei
    Rao, Yong
    Jia, Donghai
    Zhou, Dinggang
    Xiao, Huagui
    Wang, Yonggang
    Xiong, Xinghua
    Mason, Annaliese S.
    Pires, J. Chris
    Snowdon, Rod J.
    Hua, Wei
    Liu, Zhongsong
    [J]. NATURE GENETICS, 2021, 53 (09) : 1392 - +
  • [47] Genome sequence of mungbean and insights into evolution within Vigna species
    Kang, Yang Jae
    Kim, Sue K.
    Kim, Moon Young
    Lestari, Puji
    Kim, Kil Hyun
    Ha, Bo-Keun
    Jun, Tae Hwan
    Hwang, Won Joo
    Lee, Taeyoung
    Lee, Jayern
    Shim, Sangrea
    Yoon, Min Young
    Jang, Young Eun
    Han, Kwang Soo
    Taeprayoon, Puntaree
    Yoon, Na
    Somta, Prakit
    Tanya, Patcharin
    Kim, Kwang Soo
    Gwag, Jae-Gyun
    Moon, Jung-Kyung
    Lee, Yeong-Ho
    Park, Beom-Seok
    Bombarely, Aureliano
    Doyle, Jeffrey J.
    Jackson, Scott A.
    Schafleitner, Roland
    Srinives, Peerasak
    Varshney, Rajeev K.
    Lee, Suk-Ha
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [48] Wall associated kinases from plants - An overview
    Kanneganti V.
    Gupta A.K.
    [J]. Physiology and Molecular Biology of Plants, 2008, 14 (1-2) : 109 - 118
  • [49] Using intron position conservation for homology-based gene prediction
    Keilwagen, Jens
    Wenk, Michael
    Erickson, Jessica L.
    Schattat, Martin H.
    Grau, Jan
    Hartung, Frank
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (09)
  • [50] Kim D, 2015, NAT METHODS, V12, P357, DOI [10.1038/nmeth.3317, 10.1038/NMETH.3317]