The “FIP Effect” and the Origins of Solar Energetic Particles and of the Solar Wind

被引:0
|
作者
Donald V. Reames
机构
[1] University of Maryland,Institute for Physical Science and Technology
来源
Solar Physics | 2018年 / 293卷
关键词
Solar energetic particles; Solar wind; Coronal mass ejections; Solar system abundances; Solar flares;
D O I
暂无
中图分类号
学科分类号
摘要
We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at ≈10eV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,10~\mbox{eV}$\end{document} in the SEPs but ≈14eV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,14~\mbox{eV}$\end{document} for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.
引用
收藏
相关论文
共 50 条
  • [1] The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind
    Reames, Donald V.
    SOLAR PHYSICS, 2018, 293 (03)
  • [2] The unknown origins of solar energetic particles
    Yardley, Stephanie
    ASTRONOMY & GEOPHYSICS, 2022, 63 (03) : 28 - 31
  • [3] COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES
    Schmelz, J. T.
    Reames, D. V.
    von Steiger, R.
    Basu, S.
    ASTROPHYSICAL JOURNAL, 2012, 755 (01):
  • [4] SOLAR WIND AND SOLAR ENERGETIC PARTICLES - PROPERTIES AND INTERACTIONS
    KAVANAGH, LD
    SCHARDT, AW
    ROELOF, EC
    REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, 1970, 8 (02): : 389 - &
  • [5] Energetic particles in the solar wind and at the sun
    Lin, RP
    ROBOTIC EXPLORATION CLOSE TO THE SUN: SCIENTIFIC BASIS, 1997, (385): : 25 - 40
  • [6] Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles
    Donald V. Reames
    Space Science Reviews, 2018, 214
  • [7] Energetic particles and solar wind disturbances
    Cane, HV
    Richardson, IG
    Wibberenz, G
    SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 449 - 452
  • [8] Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles
    Reames, Donald V.
    SPACE SCIENCE REVIEWS, 2018, 214 (03)
  • [9] Effect of flux tubes in the solar wind on the diffusion of energetic particles
    Qin, G.
    Li, G.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 682 (02) : L129 - L132
  • [10] On the Differences in Composition between Solar Energetic Particles and Solar Wind
    R. A. Mewaldt
    C. M. S. Cohen
    G. M. Mason
    A. C. Cummings
    M. I. Desai
    R. A. Leske
    J. Raines
    E. C. Stone
    M. E. Wiedenbeck
    T. T. von Rosenvinge
    T. H. Zurbuchen
    Space Science Reviews, 2007, 130 : 207 - 219