Enhanced relativistic-electron beam collimation using two consecutive laser pulses

被引:0
作者
Sophia Malko
Xavier Vaisseau
Frederic Perez
Dimitri Batani
Alessandro Curcio
Michael Ehret
Javier Honrubia
Katarzyna Jakubowska
Alessio Morace
João Jorge Santos
Luca Volpe
机构
[1] Centro de Laseres Pulsados (CLPU),Institute of Laser Engineering
[2] Parque Cientifico,undefined
[3] University of Salamanca,undefined
[4] Laboratoire pour l’Utilisation des Lasers Intenses,undefined
[5] Ecole Polytechnique,undefined
[6] CNRS,undefined
[7] CEA,undefined
[8] UMR 7605,undefined
[9] Univ. Bordeaux,undefined
[10] CNRS,undefined
[11] CEA,undefined
[12] CELIA (Centre Lasers Intenses et Applications),undefined
[13] UMR 5107,undefined
[14] Laboratori Nazionali di Frascati (INFN),undefined
[15] Institut für Kernphysik,undefined
[16] Technische Universität Darmstadt,undefined
[17] ETSI Aeronáuticos,undefined
[18] Universidad Politécnica de Madrid,undefined
[19] Institute of Plasma Physics and Laser Microfusion,undefined
[20] Osaka University,undefined
[21] Laser-Plasma Chair at the University of Salamanca,undefined
来源
Scientific Reports | / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The double laser pulse approach to relativistic electron beam (REB) collimation in solid targets has been investigated at the LULI-ELFIE facility. In this scheme two collinear laser pulses are focused onto a solid target with a given intensity ratio and time delay to generate REBs. The magnetic field generated by the first laser-driven REB is used to guide the REB generated by a second delayed laser pulse. We show how electron beam collimation can be controlled by properly adjusting the ratio of focus size and the delay time between the two pulses. We found that the maximum of electron beam collimation is clearly dependent on the laser focal spot size ratio and related to the magnetic field dynamics. Cu-Kα and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy (≤100 keV) and high energy (≥MeV) components of the REB.
引用
收藏
相关论文
共 133 条
[1]  
Snavely RA(2000)Intense high-energy proton beams from petawatt-laser irradiation of solids Phys. Rev. Lett. 85 2945-2948
[2]  
Flacco A(2010)Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration Phys. Rev. E 81 036405-1634
[3]  
Brenner CM(2014)High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets Applied Physics Letters 104 081123-315
[4]  
Batani D(2018)Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime Physics of Plasmas 25 054506-368
[5]  
Boutoux G(2002)Energetic ions generated by laser pulses: A detailed study on target properties Phys. Rev. ST Accel. Beams 5 061301-R5930
[6]  
Burgy F(1994)Ignition and high gain with ultrapowerful lasers* Physics of Plasmas 1 1626-5733
[7]  
Jakubowska K(2014)Fast electron energy transport in solid density and compressed plasma Nuclear Fusion 54 054004-435
[8]  
Ducret JE(2006)The generation and transport of large currents in dense materials: The physics of electron transport relative to fast ignition Fusion Science and Technology 49 297-373
[9]  
Roth M(2003)Fundamental issues in fast ignition physics: from relativistic electron generation to proton driven ignition Nuclear Fusion 43 362-222
[10]  
Tabak M(2012)Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers Phys. Rev. Lett. 108 235004-616