Stochastic evolution equations with Lévy noise in the dual of a nuclear space

被引:0
作者
C. A. Fonseca-Mora
机构
[1] Universidad de Costa Rica,Escuela de Matemática
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2024年 / 12卷
关键词
Lévy processes; Dual of a nuclear space; Stochastic integrals; Stochastic evolution equations; Weak convergence; 60H15; 60H05; 60G17; 60B12;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we give sufficient and necessary conditions for the existence of a weak and mild solution to stochastic evolution equations with (general) Lévy noise taking values in the dual of a nuclear space. As part of our approach we develop a theory of stochastic integration with respect to a Lévy process taking values in the dual of a nuclear space. We also derive further properties of the solution such as the existence of a solution with square moments, the Markov property and path regularity of the solution. In the final part of the paper we give sufficient conditions for the weak convergence of the solutions to a sequence of stochastic evolution equations with Lévy noises.
引用
收藏
页码:173 / 219
页数:46
相关论文
共 78 条
[1]  
Albanese AA(2012)Mean ergodic semigroups of operators Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 106 299-319
[2]  
Bonet J(2005)Stochastic integrals and the Lévy–Itô decomposition theorem on separable Banach spaces Stoch. Anal. Appl. 23 217-253
[3]  
Ricker WJ(2021)Stochastic integration in Hilbert spaces with respect to cylindrical martingale-valued measures ALEA Lat. Am. J. Probab. Math. Stat. 18 1267-1295
[4]  
Albeverio S(2010)Cylindrical Lévy processes in Banach spaces Proc. Lond. Math. Soc. (3) 101 697-726
[5]  
Rüdiger B(1974)Semigroups of operators on locally convex spaces Trans. Am. Math. Soc. 199 163-179
[6]  
Alvarado-Solano AE(1986)Langevin equations for Probab. Theory Relat Fields 73 227-244
[7]  
Fonseca-Mora CA(1991)-valued Gaussian processes and fluctuation limits of infinite particle systems Can. J. Math. 43 1136-1149
[8]  
Applebaum D(1999)Gaussian and non-Gaussian distribution-valued Ornstein–Uhlenbeck processes Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 569-615
[9]  
Riedle M(2001)Self-intersection local time for Math. Nachr. 228 47-83
[10]  
Babalola VA(1999)-Wiener processes and related Ornstein–Uhlenbeck processes Stoch. Proc. Appl. 84 1-24