The theory and experiment of very-long-wavelength 256×1 GaAs/AlxGa1−xAs quantum well infrared detector linear arrays

被引:0
作者
FangMin Guo
Ning Li
DaYuan Xiong
HongLou Zhen
XiangYan Xu
Ying Hou
RuiJun Ding
Wei Lu
Qi Huang
JunMing Zhou
机构
[1] Chinese Academy of Sciences,National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics
[2] Chinese Academy of Sciences,Institute of Physics
来源
Science in China Series G: Physics, Mechanics and Astronomy | 2008年 / 51卷
关键词
quantum well; focal plane arrays; very long wavelength; infrared detector; diffraction grating;
D O I
暂无
中图分类号
学科分类号
摘要
The 256×1 linear array of multiple quantum wells infrared photodetector (QWIP) is designed and fabricated for the peak response wavelength at λP = 14.6 μm. The response spectral width is bigger than 2.2 μm. The two-dimensional (2D) diffractive coupling grating has been formed on the top QWIP photosensitive pixel for coupling the infrared radiation to the infrared detective layers. The performance of the device at VB = 3 V and T = 45 K has the responsibility 4.28×10−2 (A/W), the blackbody detectivity Db* = 5.14×109 (cm·Hz1/2/W), and the peak detectivity Dλ* = 4.24× 1010 (cm·Hz1/2/W). The sensor pixels are connected with CMOS read out circuit (ROC) hybridization by indium bumps. When integral time is 100 μs, the linear array has the effective pixel of QWIP FPA Nef of 99.2%, the average responsibility \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline R $$\end{document} (V/W) of 3.48×106 (V/W), the average peak detectivity Dλ* of 8.29×109 (cm·Hz1/2/W), and the non-uniformity UR of 5.83%. This device is ready for the thermal image application.
引用
收藏
页码:805 / 812
页数:7
相关论文
共 25 条
[1]  
Rogalski A.(2007)Material consideration for third generation infrared photon detectors Infrared Phys Technol 50 240-252
[2]  
Gunapala S. D.(2001)Quantum well infrared photodetector research and development at Jet Propulsion Laboratory Infrared Phys Technol 42 267-282
[3]  
Bandara S. V.(2003)640/spl times/512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays IEEE Trans Electron Dev 50 2353-2359
[4]  
Liu J. K.(2001)35 μm cutoff bound-to-quasibound and bound-to-continuum InGaAs QWIPs Infrared Phys Technol 42 157-162
[5]  
Sarath D. G.(2006)Study on the Sci China Ser G-Phys Mech Astron 49 401-410
[6]  
Sumith V. B.(2001)-type QWIP-LED device Superlatt Microstruct 29 309-319
[7]  
John K.(2005)Infrared radiation transmission through GaAs/AlGaAs quantum well infrared photodetector Infrared Phys Technol 47 29-36
[8]  
Perera A. G. U.(2003)Detection wavelengths and photocurrents of very long wavelength quantum-well infrared photodetectors J Appl Phys 93 9432-9436
[9]  
Matsik S. G.(2005)Photocurrents of 14 mm quantum-well infrared photodetectors Sci China Ser G-Phys Mech Astron 48 513-520
[10]  
Liu H. C.(undefined)Analysis of electromagnetic propagation in bi-refringent thin film undefined undefined undefined-undefined