Local integrals for planar scattering amplitudes

被引:0
作者
N. Arkani-Hamed
J. Bourjaily
F. Cachazo
J. Trnka
机构
[1] School of Natural Sciences,Department of Physics
[2] Institute for Advanced Study,undefined
[3] Princeton University,undefined
[4] Perimeter Institute for Theoretical Physics,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Scattering Amplitudes; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, an explicit, recursive formula for the all-loop integrand of planar scattering amplitudes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {4} $\end{document} SYM has been described, generalizing the BCFW formula for tree amplitudes, and making manifest the Yangian symmetry of the theory. This has made it possible to easily study the structure of multi-loop amplitudes in the theory. In this paper we describe a remarkable fact revealed by these investigations: the integrand can be expressed in an amazingly simple and manifestly local form when represented in momentum-twistor space using a set of chiral integrals with unit leading singularities. As examples, we present very-concise expressions for all 2- and 3-loop MHV integrands, as well as all 2-loop NMHV integrands. We also describe a natural set of manifestly IR-finite integrals that can be used to express IR-safe objects such as the ratio function. Along the way we give a pedagogical introduction to the foundations of the subject. The new local forms of the integrand are closely connected to leading singularities — matching only a small subset of all leading singularities remarkably suffices to determine the full integrand. These results strongly suggest the existence of a theory for the integrand directly yielding these local expressions, allowing for a more direct understanding of the emergence of local spacetime physics.
引用
收藏
相关论文
共 50 条
[21]   Δ-algebra and scattering amplitudes [J].
Cachazo, Freddy ;
Early, Nick ;
Guevara, Alfredo ;
Mizera, Sebastian .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
[22]   Δ-algebra and scattering amplitudes [J].
Freddy Cachazo ;
Nick Early ;
Alfredo Guevara ;
Sebastian Mizera .
Journal of High Energy Physics, 2019
[23]   Grassmannian integrals in Minkowski signature, amplitudes, and integrability [J].
Kanning, Nils ;
Staudacher, Matthias .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
[24]   Analytic form of the planar two-loop five-parton scattering amplitudes in QCD [J].
Abreu, S. ;
Dormans, J. ;
Cordero, F. Febres ;
Ita, H. ;
Page, B. ;
Sotnikov, V. .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
[25]   Maximal transcendental weight contribution of scattering amplitudes [J].
Henn, Johannes M. ;
Bobadilla, William J. Torres .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
[26]   Analytic form of the planar two-loop five-parton scattering amplitudes in QCD [J].
S. Abreu ;
J. Dormans ;
F. Febres Cordero ;
H. Ita ;
B. Page ;
V. Sotnikov .
Journal of High Energy Physics, 2019
[27]   The SAGEX review on scattering amplitudes Chapter 7: Positive geometry of scattering amplitudes [J].
Herrmann, Enrico ;
Trnka, Jaroslav .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (44)
[28]   Maximal transcendental weight contribution of scattering amplitudes [J].
Johannes M. Henn ;
William J. Torres Bobadilla .
Journal of High Energy Physics, 2022
[29]   The SAGEX review on scattering amplitudes Chapter 5: Analytic bootstraps for scattering amplitudes and beyond [J].
Papathanasiou, Georgios .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (44)
[30]   Regge constraints on local four-point scattering amplitudes of massive particles with spin [J].
Chowdhury, Subham Dutta ;
Kumar, Vipul ;
Kundu, Suman ;
Rahaman, Asikur .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05)