Local integrals for planar scattering amplitudes

被引:0
作者
N. Arkani-Hamed
J. Bourjaily
F. Cachazo
J. Trnka
机构
[1] School of Natural Sciences,Department of Physics
[2] Institute for Advanced Study,undefined
[3] Princeton University,undefined
[4] Perimeter Institute for Theoretical Physics,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Scattering Amplitudes; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, an explicit, recursive formula for the all-loop integrand of planar scattering amplitudes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {4} $\end{document} SYM has been described, generalizing the BCFW formula for tree amplitudes, and making manifest the Yangian symmetry of the theory. This has made it possible to easily study the structure of multi-loop amplitudes in the theory. In this paper we describe a remarkable fact revealed by these investigations: the integrand can be expressed in an amazingly simple and manifestly local form when represented in momentum-twistor space using a set of chiral integrals with unit leading singularities. As examples, we present very-concise expressions for all 2- and 3-loop MHV integrands, as well as all 2-loop NMHV integrands. We also describe a natural set of manifestly IR-finite integrals that can be used to express IR-safe objects such as the ratio function. Along the way we give a pedagogical introduction to the foundations of the subject. The new local forms of the integrand are closely connected to leading singularities — matching only a small subset of all leading singularities remarkably suffices to determine the full integrand. These results strongly suggest the existence of a theory for the integrand directly yielding these local expressions, allowing for a more direct understanding of the emergence of local spacetime physics.
引用
收藏
相关论文
共 50 条
[1]   Local integrals for planar scattering amplitudes [J].
Arkani-Hamed, N. ;
Bourjaily, J. ;
Cachazo, F. ;
Trnka, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06)
[2]   Pentagon functions for massless planar scattering amplitudes [J].
T. Gehrmann ;
J. M. Henn ;
N. A. Lo Presti .
Journal of High Energy Physics, 2018
[3]   Pentagon functions for massless planar scattering amplitudes [J].
Gehrmann, T. ;
Henn, J. M. ;
Lo Presti, N. A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[4]   Comments on all-loop constraints for scattering amplitudes and Feynman integrals [J].
He, Song ;
Li, Zhenjie ;
Yang, Qinglin .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
[5]   Comments on all-loop constraints for scattering amplitudes and Feynman integrals [J].
Song He ;
Zhenjie Li ;
Qinglin Yang .
Journal of High Energy Physics, 2022
[6]   Mellin amplitudes for dual conformal integrals [J].
Miguel F. Paulos ;
Marcus Spradlin ;
Anastasia Volovich .
Journal of High Energy Physics, 2012
[7]   Mellin amplitudes for dual conformal integrals [J].
Paulos, Miguel F. ;
Spradlin, Marcus ;
Volovich, Anastasia .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08)
[8]   Pentagon functions for one-mass planar scattering amplitudes [J].
Chicherin, Dmitry ;
Sotnikov, Vasily ;
Zoia, Simone .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
[9]   Pentagon functions for one-mass planar scattering amplitudes [J].
Dmitry Chicherin ;
Vasily Sotnikov ;
Simone Zoia .
Journal of High Energy Physics, 2022
[10]   A note on polytopes for scattering amplitudes [J].
N. Arkani-Hamed ;
J. Bourjaily ;
F. Cachazo ;
A. Hodges ;
J. Trnka .
Journal of High Energy Physics, 2012