\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi_p}$$\end{document}-optimal designs for a linear log contrast model for experiments with mixtures

被引:0
作者
Mong-Na Lo Huang
Miao-Kuan Huang
机构
[1] National Sun Yat-sen University,Department of Applied Mathematics
[2] National Formosa University,Center for General Education
关键词
-optimal; Complete class; -optimal; Kiefer ordering;
D O I
10.1007/s00184-008-0190-7
中图分类号
学科分类号
摘要
A mixture experiment is an experiment in which the k ingredients are nonnegative and subject to the simplex restriction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^k x_i\,=\,1}$$\end{document} on the (k − 1)-dimensional probability simplex Sk-1. In this work, an essentially complete class of designs under the Kiefer ordering for a linear log contrast model with a mixture experiment is presented. Based on the completeness result, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi_p}$$\end{document}-optimal designs for all p,−∞ ≤ p ≤ 1 including D- and A-optimal are obtained, where the eigenvalues of the design moment matrix are used. By using the approach presented here, we gain insight on how these \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi_p}$$\end{document}-optimal designs behave.
引用
收藏
页码:239 / 256
页数:17
相关论文
共 16 条
  • [1] Aitchison J(1984)Log contrast models for experiments with mixtures Biometrika 71 323-330
  • [2] Bacon-Shone J(1988)Optimal design for a linear log contrast model for experiments with mixtures J Stat Plann Inference 20 105-113
  • [3] Chan LY(2001)- and J Appl Stat 28 537-546
  • [4] Chan LY(1987)-optimal designs for a log contrast model for experiments with mixtures Ann Stat 15 1593-1603
  • [5] Guan YN(1995)An application of the Kiefer-Wolfowitz equivalence theorem to a problem in Hadamard transform optics Ann Stat 23 41-54
  • [6] Cheng CS(1999)Complete class results for the moment matrices of designs over permutation-invariant sets J Stat Plann Inference 79 325-348
  • [7] Cheng CS(1991)Kiefer ordering of simplex designs for first- and second-degree mixture models Metrika 38 129-161
  • [8] Draper NR(2000)First and second order rotatability of experimental designs, moment matrices, and information surfaces Ann Stat 28 578-590
  • [9] Pukelsheim F(2004)Kiefer ordering of simplex designs for second-degree mixture models with four or more ingredients J Stat Plann Inference 123 117-131
  • [10] Draper NR(undefined)Optimal designs for second-degree Kronecker model mixture experiments undefined undefined undefined-undefined