Type A images of Galois representations and maximality

被引:0
作者
Chun Yin Hui
Michael Larsen
机构
[1] University of Luxembourg,Mathematics Research Unit
[2] Indiana University,Department of Mathematics
来源
Mathematische Zeitschrift | 2016年 / 284卷
关键词
Galois representations; Big Galois image; Type A representations; 11F80; 14F20;
D O I
暂无
中图分类号
学科分类号
摘要
Given a compatible subsystem {ρℓ}ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\rho _\ell \}_\ell $$\end{document} of n-dimensional ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-adic Galois representations arising from étale cohomology of any complete, non-singular variety over a number field K, we define Γℓ:=ρℓ(Gal(K¯/K))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\ell := \rho _\ell ({\text {Gal}}(\bar{K}/K))$$\end{document} and let Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {G}_\ell $$\end{document} denote the Zariski closure of Γℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\ell $$\end{document} in GLn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {GL}_n$$\end{document}. If Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {G}_\ell $$\end{document} is of Type A in the sense that all simple composition factors are of type A in the Cartan-Killing classification, then Γℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\ell $$\end{document} is, in a suitable sense, maximal in Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {G}_\ell $$\end{document} for all ℓ≫0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \gg 0$$\end{document}. As a corollary, if ρℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\ell $$\end{document} is semisimple and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is sufficiently large, then Gℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {G}_\ell $$\end{document} is unramified.
引用
收藏
页码:989 / 1003
页数:14
相关论文
共 27 条
[1]  
Achter JD(2007)The integral monodromy of hyperelliptic and trielliptic curves Math. Ann. 338 187-206
[2]  
Pries R(1971)Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I Invent. Math. 12 95-104
[3]  
Borel A(2015)On Manuscr. Math. 147 381-398
[4]  
Tits J(2012)-independency in families of motivic Duke Math. J. 161 2605-2634
[5]  
Cadoret A(1991)-adic representations Bull. Aust. Math. Soc. 44 71-78
[6]  
Cadoret A(2012)A uniform open image theorem for J. Number Theory 132 1583-1625
[7]  
Tamagawa A(2008)-adic representations, I Duke Math. J. 141 179-203
[8]  
Chi W-C(2013)On the Math. Res. Lett. 20 705-728
[9]  
Devic A(2015)-adic representations attached to simple abelian varieties of type IV Compos. Math. 151 1215-1241
[10]  
Pink R(1995)Adelic openness for Drinfeld modules in special characteristic Duke Math. J. 80 601-630