Existence of a Steady Flow of Stokes Fluid Past a Linear Elastic Structure Using Fictitious Domain

被引:0
作者
Andrei Halanay
Cornel Marius Murea
Dan Tiba
机构
[1] University Politehnica of Bucharest,Department of Mathematics 1
[2] Université de Haute Alsace,Laboratoire de Mathématiques, Informatique et Applications
[3] Institute of Mathematics (Romanian Academy) and Academy of Romanian Scientists,undefined
来源
Journal of Mathematical Fluid Mechanics | 2016年 / 18卷
关键词
Fluid structure interaction; fictitious domain; 35A01; 74F10;
D O I
暂无
中图分类号
学科分类号
摘要
We use fictitious domain method with penalization for the Stokes equation in order to obtain approximate solutions in a fixed larger domain including the domain occupied by the structure. The coefficients of the fluid problem, excepting the penalizing term, are independent of the deformation of the structure. It is easy to check the inf-sup condition and the coercivity of the Stokes problem in the fixed domain. Subtracting the structure equations from the fictitious fluid equations in the structure domain, we obtain a weak formulation in a fixed domain, where the continuity of the stress at the interface does not appear explicitly. Existence of a solution is proved when the structure displacement is generated by a finite number of modes.
引用
收藏
页码:397 / 413
页数:16
相关论文
共 38 条
  • [1] Bayada G.(2004)On the existence of solution for a nonhomogeneous Stokes-rod coupled problem Nonlinear Anal. 59 1-19
  • [2] Chambat M.(2004)On the existence of strong solution to a coupled fluid structure evolution problem J. Math. Fluid Mech. 6 21-52
  • [3] Cid B.(2012)Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid Interfaces Free Bound. 14 273-306
  • [4] Vazquez C.(1975)On the existence of a solution in a domain identification problem J. Math. Anal. Appl. 52 189-219
  • [5] Beirao da Veiga H.(2000)Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid Commun. Partial Differ. Equ. 25 1019-1042
  • [6] Boulakia M.(2000)On weak solutions for fluid-rigid structure interaction: compressible and incompressible models Commun. Partial Differ. Equ. 25 1399-1413
  • [7] Schwindt E.(2001)Weak solutions for a fluid-elastic structure interaction model Rev. Mat. Complut. 14 523-538
  • [8] Takahashi T.(2009)Steady flow of a Navier–Stokes liquid past an elastic body Arch. Ration. Mech. Anal. 194 849-875
  • [9] Chenais D.(1998)Existence et unicité de solutions d’un problème de couplage fluide-structure bidimensionnel stationnaire C. R. Acad. Sci. Paris Sér. I Math. 326 651-656
  • [10] Conca C.(2002)Existence for a three-dimensional steady state fluid–structure interaction problem J. Math. Fluid Mech. 4 76-94