Quantitative estimates of strong unique continuation for wave equations

被引:0
作者
S. Vessella
机构
[1] Università degli Studi di Firenze,
来源
Mathematische Annalen | 2017年 / 367卷
关键词
Primary 35R25; 35L; Secondary 35B60; 35R30;
D O I
暂无
中图分类号
学科分类号
摘要
The main results of the present paper consist in some quantitative estimates for solutions to the wave equation ∂t2u-div(A(x)∇xu)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^2_{t}u-\text{ div }(A(x)\nabla _x u)=0$$\end{document}. Such estimates imply the following strong unique continuation properties: (a) if u is a solution to the the wave equation and u is flat on a segment {x0}×J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_0\}\times J$$\end{document} on the t axis, then u vanishes in a neighborhood of {x0}×J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_0\}\times J$$\end{document}. (b) Let u be a solution of the above wave equation in Ω×J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \times J$$\end{document} that vanishes on a a portion Z×J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z\times J$$\end{document} where Z is a portion of ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} and u is flat on a segment {x0}×J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_0\}\times J$$\end{document}, x0∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0\in Z$$\end{document}, then u vanishes in a neighborhood of {x0}×J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_0\}\times J$$\end{document}. The property (a) has been proved by Lebeau (Commun Partial Differ Equ 24:777–783, 1999).
引用
收藏
页码:135 / 164
页数:29
相关论文
共 53 条
  • [1] Adolfsson V(1997) domains and unique continuation at the boundary Commun. Pure Appl. Math. 50 935-969
  • [2] Escauriaza L(1997)Examples of instability in inverse boundary-value problems Inverse Probl. 13 887-897
  • [3] Alessandrini G(2000)Optimal stability for inverse elliptic boundary value problems with unknown boundaries Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 755-806
  • [4] Alessandrini G(2009)The stability for the Cauchy problem for elliptic equations Inverse Probl. 25 1-47
  • [5] Beretta E(2004)Remark on the strong unique continuation property for parabolic operators Proc. AMS 132 499-501
  • [6] Rosset E(1962)A unique continuation theorem for exterior differential forms on riemannian manifolds Ark. Matematik 4 417-453
  • [7] Vessella S(1978)Unique continuation of solutions of partial differential equations and inequalities from manifolds of any dimension Duke Math. J. 45 1-13
  • [8] Alessandrini G(1992)A local vanishing theorem for distribution CRAS Paris Ser. I 315 1231-1234
  • [9] Rondi L(2002)Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries Trans. Am. Math. Soc. 354 491-535
  • [10] Rosset E(2002)A stability result in the localization of cavities in a thermic conducting medium ESAIM Control Optim. Calc. Var. 7 521-565