Loop quantum gravity with optimal control path integral, and application to black hole tunneling

被引:0
作者
Quentin Ansel
机构
[1] Observatoire des Sciences de l’Univers THETA,Institut UTINAM
来源
General Relativity and Gravitation | 2022年 / 54卷
关键词
Loop quantum gravity; Optimal control; Path integral; Transition of geometry;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a novel path integral formalism for Einstein’s theory of gravitation from the viewpoint of optimal control theory. Despite its close connection to the well-known variational principle of physicists, optimal control turns out to be more general. Within this context, a Lagrangian which is different from the Einstein-Hilbert Lagrangian is defined. Einstein’s field equations are recovered exactly with variations of the new action functional. The quantum theory is obtained using Ashtekar variables and the loop scalar product. As an illustrative example, the tunneling process of a black hole into another black hole or into a white hole is investigated with a toy model.
引用
收藏
相关论文
共 77 条
[1]  
Dirac PAM(1958)The theory of gravitation in Hamiltonian form Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 246 333-343
[2]  
Arnowitt R(2008)Republication of: the dynamics of general relativity Gen. Relativ. Gravit. 40 1997-2027
[3]  
Deser S(1986)New variables for classical and quantum gravity Phys. Rev. Lett. 57 2244-2247
[4]  
Misner CW(2012)Complex Ashtekar variables and reality conditions for Holst’s action Annales Henri Poincaré 13 425-448
[5]  
Ashtekar A(2013)The spin-foam approach to quantum gravity Living Rev. Relativ. 16 3-995
[6]  
Wieland W(2014)Cosine problem in EPRL/FK spinfoam model Gen. Relativ. Gravit. 46 1616-25
[7]  
Perez A(2018)Infrared divergences in the EPRL-FK spin foam model Class. Quantum Grav. 35 175,019-1786
[8]  
Vojinovic M(2013)Divergences and orientation in spinfoams Class. Quantum Grav. 30 055009-1019
[9]  
Donà P(2018)Numerical methods for EPRL spin foam transition amplitudes and Lorentzian recoupling theory Gen. Relativ. Gravit. 50 127-R211
[10]  
Christodoulou M(2020)Searching for classical geometries in spin foam amplitudes: a numerical method Class. Quantum Grav. 37 094,002-5510