Genus for knots and links in renormalizable templates with several branch nodes

被引:0
作者
Pedro Simões
Luís Silva
Nuno Franco
机构
[1] University of Évora,Department of Mathematics
[2] ISEL - Lisbon Superior Engineering Institute,CIMA
[3] University of Évora,UE and Department of Mathematics
来源
Nonlinear Dynamics | 2014年 / 77卷
关键词
Nonautonomous dynamical systems; Piecewise monotonous maps; Renormalization; Knots;
D O I
暂无
中图分类号
学科分类号
摘要
We apply kneading theory to describe the knots and links generated by the iteration of renormalizable nonautonomous dynamical systems with reducible kneading invariants, in terms of the links corresponding to each factor. As a consequence we obtain explicit formulas for the genus for this kind of knots and links.
引用
收藏
页码:1035 / 1045
页数:10
相关论文
共 13 条
  • [1] Williams R(1979)The structure of Lorenz attractors Publ. Math. IHES. 50 73-99
  • [2] Birmann J(1983)Knotted periodic orbits in dynamical systems I: Lorenz’s equations Topology 22 47-82
  • [3] Williams RF(1979)Structural stability of Lorenz attractors Publ. Math. IHES. 50 59-72
  • [4] Guckenheimer J(2013)Dynamical behaviors of the periodic parameter-switching system Nonlinear Dyn. 73 2937-38
  • [5] Williams R(2013)Symbolic dynamics and renormalization of nonautonomous J. Differ. Equ. Appl. 19 27-586
  • [6] Zhang C(2012) periodic dynamical systems Discrete Contin. Dyn. Syst. (A) 50 565-undefined
  • [7] Han X(undefined)Genus and braid index associated to a sequence of renormalizable Lorenz maps undefined undefined undefined-undefined
  • [8] Bi Q(undefined)undefined undefined undefined undefined-undefined
  • [9] Franco N(undefined)undefined undefined undefined undefined-undefined
  • [10] Silva L(undefined)undefined undefined undefined undefined-undefined