Linnik’s theorem for Sato-Tate laws on elliptic curves with complex multiplication

被引:2
作者
Chen E. [1 ]
Park P.S. [2 ]
Swaminathan A.A. [3 ]
机构
[1] Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 02139, MA
[2] Department of Mathematics, Princeton University, Princeton, 08544, NJ
[3] Department of Mathematics, Harvard College, Cambridge, 02138, MA
基金
美国国家科学基金会;
关键词
Prime Ideal; Elliptic Curve; Complex Multiplication; Elliptic Curf; Class Number;
D O I
10.1007/s40993-015-0028-0
中图分类号
学科分类号
摘要
Let E/ ℚ be an elliptic curve with complex multiplication (CM), and for each prime p of good reduction, let aE(p) = p+ 1 − #E(Fp) denote the trace of Frobenius. By the Hasse bound, aE(p)=2pcosθp for a unique θp∈ [0,π]. In this paper, we prove that the least prime p such that θp∈ [α,β]⊂ [0,π] satisfies p≪(NEβ−α)A, where NE is the conductor of E and the implied constant and exponent A>2 are absolute and effectively computable. Our result is an analogue for CM elliptic curves of Linnik’s Theorem for arithmetic progressions, which states that the least prime p≡a (mod q) for (a,q)=1 satisfies p≪qL for an absolute constant L>0. © 2015, The Author(s).
引用
收藏
相关论文
共 16 条
[1]  
Barnet-Lamb T., Geraghty D., Harris M., Taylor R., A family of calabi-yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci, 47, 1, pp. 29-98, (2011)
[2]  
Cojocaru A.C., Questions about the reductions modulo primes of an elliptic curve, Number theory, CRM Proc. Lecture Notes, vol. 36, (2004)
[3]  
Fogels E., On the zeros of L-functions, Acta Arith, 11, pp. 67-96, (1965)
[4]  
Graham S., On Linnik’s constant, Acta Arith, 39, 2, pp. 163-179, (1981)
[5]  
Iwaniec H., Topics in classical automorphic forms (graduate studies in mathematics, v. 17), (1997)
[6]  
Iwaniec H., Kowalski E., Analytic number theory, American Mathematical Society Colloquium Publications. vol. 53, (2004)
[7]  
Jutila M., A new estimate for Linnik’s constant, Ann. Acad. Sci. Fenn. Ser. A I No, 471, (1970)
[8]  
Kaufman R.M., The geometric aspect of Ju. V. Linnik’s theorem on the least prime, Litovsk. Mat. Sb, 17, 1, pp. 111-114, (1977)
[9]  
Koval'cik F.B., Density theorems for sectors and progressions, Litovsk. Mat. Sb, 15, 4, pp. 133-151, (1975)
[10]  
Lemke Oliver R., Thorner, J: Effective log-free zero density estimates for automorphic L-functions and the Sato-Tate conjecture (2015). arXiv e-prints available at, (1505)