Lattice Points Close to the Heisenberg Spheres

被引:0
作者
Campolongo, Elizabeth G. [1 ]
Taylor, Krystal [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
来源
MATEMATICA | 2023年 / 2卷 / 01期
关键词
Lattice points; Gauss circle problem; Energy integrals; Geometric sums; Link between geometric measure theory and number theory; INTEGER POINTS; CONVEX-BODIES; CURVATURE; DISCREPANCY;
D O I
10.1007/s44007-022-00040-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a lattice point-counting problem for spheres arising from the Heisenberg groups. In particular, we prove an upper bound on the number of points on and near large dilates of the unit spheres generated by the anisotropic norms & Vert; ( z , t ) & Vert; alpha = ( z alpha + t alpha / 2 ) 1 / alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert (z,t)\Vert _\alpha = ( \left| z\right| <^>\alpha + \left| t\right| <^>{\alpha /2})<^>{1/\alpha }$$\end{document} for alpha >= 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 2$$\end{document} . As a first step, we reduce our counting problem to one of bounding an energy integral. The primary new challenges that arise are the presence of vanishing curvature and nonisotropic dilations. In the process, we establish bounds on the Fourier transform of the surface measures arising from these norms. Further, we utilize the techniques developed here to estimate the number of lattice points in the intersection of two such surfaces.
引用
收藏
页码:156 / 196
页数:41
相关论文
共 37 条
[1]  
Gath YA, 2017, Arxiv, DOI arXiv:1710.02995
[2]  
Andrews G., 1963, Trans. Am. Math. Soc, V106, P270, DOI [10.1090/S0002-9947-1963-0143105-7, DOI 10.1090/S0002-9947-1963-0143105-7]
[3]   FINITE CHAINS INSIDE THIN SUBSETS OF Rd [J].
Bennett, Michael ;
Iosevich, Alexander ;
Taylor, Krystal .
ANALYSIS & PDE, 2016, 9 (03) :597-614
[4]   The Circle Problem of Gauss and the Divisor Problem of Dirichlet-Still Unsolved [J].
Berndt, Bruce C. ;
Kim, Sun ;
Zaharescu, Alexandru .
AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (02) :99-114
[5]  
Bourgain J., 2017, arXiv
[6]   Decoupling for Perturbed Cones and the Mean Square of |ζ(1/2+it)| [J].
Bourgain, Jean ;
Watt, Nigel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (17) :5219-5296
[7]  
Campolongo E.G., 2022, Lattice Point Counting through Fractal Geometry and Stationary Phase for Surfaces with Vanishing Curvature
[8]  
Chamizo F, 1998, ACTA ARITH, V85, P265
[10]  
Cygan J., 1978, COLLOQ MATH-WARSAW, V39, P367, DOI DOI 10.4064/CM-39-2-367-373