共 32 条
- [21] Congruences involving the Uℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\ell }$$\end{document} operator for weakly holomorphic modular forms The Ramanujan Journal, 2020, 51 (3) : 671 - 688
- [22] Complete classification of finite semigroups for which the inverse monoid of local automorphisms is a Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-semigroup Semigroup Forum, 2021, 102 (2) : 397 - 407
- [23] Monadic Boolean algebras with an automorphism and their relation to Df2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Df}}_{\mathbf{2}}$$\end{document}-algebras Soft Computing, 2020, 24 (1) : 227 - 236
- [24] Some q-supercongruences from Watson’s 8ϕ7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8\phi _7$$\end{document} Transformation Formula Results in Mathematics, 2020, 75 (2)
- [25] Explicit factorization of xn-1∈Fq[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n-1\in \mathbb {F}_q[x]$$\end{document} Designs, Codes and Cryptography, 2015, 77 (1) : 277 - 286
- [26] Congruence properties of coefficients of the eighth-order mock theta function V0(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_0(q)$$\end{document} The Ramanujan Journal, 2022, 57 (1) : 189 - 213
- [27] On a variety of Burnside ai-semirings satisfying xn≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n\approx x$$\end{document} Semigroup Forum, 2016, 93 (3) : 501 - 515
- [28] On the Consistency of the Matrix Equation X⊤AX=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^\top A X=B$$\end{document} when B is Symmetric Mediterranean Journal of Mathematics, 2021, 18 (2)
- [29] On the classification of ideals over R[X]/〈f(X)ps〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R[X]/\langle f(X)^{p^{s}}\rangle $\end{document} when R=Fpm+uFpm+…+unFpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R=\mathbb {F}_{p^{m}}+u\mathbb {F}_{p^{m}}+\ldots +u^{n}\mathbb {F}_{p^{m}}$\end{document} Cryptography and Communications, 2023, 15 (3) : 589 - 598
- [30] Some q-analogues of supercongruences for truncated 3F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3F_2$$\end{document} hypergeometric series The Ramanujan Journal, 2022, 59 (1) : 131 - 142