From Harmonic Maps to the Nonlinear Supersymmetric Sigma Model of Quantum Field Theory: at the Interface of Theoretical Physics, Riemannian Geometry, and Nonlinear Analysis

被引:0
作者
Jürgen Jost
Enno Keßler
Jürgen Tolksdorf
Ruijun Wu
Miaomiao Zhu
机构
[1] Max-Planck-Institut für Mathematik in den Naturwissenschaften,Institut für Theoretische Physik
[2] Universität Leipzig,School of Mathematical Sciences
[3] Shanghai Jiao Tong University,undefined
来源
Vietnam Journal of Mathematics | 2019年 / 47卷
关键词
Harmonic maps; Dirac-harmonic maps; Non-linear sigma model; Supersymmetry; Gravitino; 53C43; 53C27; 58C50;
D O I
暂无
中图分类号
学科分类号
摘要
Harmonic maps from Riemann surfaces arise from a conformally invariant variational problem. Therefore, on one hand, they are intimately connected with moduli spaces of Riemann surfaces, and on the other hand, because the conformal group is noncompact, constitute a prototype for the formation of singularities, the so-called bubbles, in geometric analysis. In theoretical physics, they arise from the nonlinear σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma $\end{document}-model of quantum field theory. That model possesses a supersymmetric extension, coupling a harmonic map like field with a nonlinear spinor field. In the physical model, that spinor field is anticommuting. In this contribution, we analyze both a mathematical version with a commuting spinor field and the original supersymmetric version. Moreover, this model gives rise to a further field, a gravitino, that can be seen as the supersymmetric partner of a Riemann surface metric. Altogether, this leads to a beautiful combination of concepts from quantum field theory, structures from Riemannian geometry and Riemann surface theory, and methods of nonlinear geometric analysis.
引用
收藏
页码:39 / 67
页数:28
相关论文
共 114 条
  • [71] Wang GF(undefined)undefined undefined undefined undefined-undefined
  • [72] Zhou CQ(undefined)undefined undefined undefined undefined-undefined
  • [73] Jost J(undefined)undefined undefined undefined undefined-undefined
  • [74] Wang GF(undefined)undefined undefined undefined undefined-undefined
  • [75] Zhou CQ(undefined)undefined undefined undefined undefined-undefined
  • [76] Zhu MM(undefined)undefined undefined undefined undefined-undefined
  • [77] Jost J(undefined)undefined undefined undefined undefined-undefined
  • [78] Wang GF(undefined)undefined undefined undefined undefined-undefined
  • [79] Zhou CQ(undefined)undefined undefined undefined undefined-undefined
  • [80] Zhu MM(undefined)undefined undefined undefined undefined-undefined