From Harmonic Maps to the Nonlinear Supersymmetric Sigma Model of Quantum Field Theory: at the Interface of Theoretical Physics, Riemannian Geometry, and Nonlinear Analysis

被引:0
作者
Jürgen Jost
Enno Keßler
Jürgen Tolksdorf
Ruijun Wu
Miaomiao Zhu
机构
[1] Max-Planck-Institut für Mathematik in den Naturwissenschaften,Institut für Theoretische Physik
[2] Universität Leipzig,School of Mathematical Sciences
[3] Shanghai Jiao Tong University,undefined
来源
Vietnam Journal of Mathematics | 2019年 / 47卷
关键词
Harmonic maps; Dirac-harmonic maps; Non-linear sigma model; Supersymmetry; Gravitino; 53C43; 53C27; 58C50;
D O I
暂无
中图分类号
学科分类号
摘要
Harmonic maps from Riemann surfaces arise from a conformally invariant variational problem. Therefore, on one hand, they are intimately connected with moduli spaces of Riemann surfaces, and on the other hand, because the conformal group is noncompact, constitute a prototype for the formation of singularities, the so-called bubbles, in geometric analysis. In theoretical physics, they arise from the nonlinear σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma $\end{document}-model of quantum field theory. That model possesses a supersymmetric extension, coupling a harmonic map like field with a nonlinear spinor field. In the physical model, that spinor field is anticommuting. In this contribution, we analyze both a mathematical version with a commuting spinor field and the original supersymmetric version. Moreover, this model gives rise to a further field, a gravitino, that can be seen as the supersymmetric partner of a Riemann surface metric. Altogether, this leads to a beautiful combination of concepts from quantum field theory, structures from Riemannian geometry and Riemann surface theory, and methods of nonlinear geometric analysis.
引用
收藏
页码:39 / 67
页数:28
相关论文
共 114 条
  • [1] Ahlfors L(1961)Some remarks on Teichmüller’s space of Riemann surfaces Ann. Math. 74 171-191
  • [2] Bers L(1966)A non-standard integral equation with applications to quasiconformal mappings Acta Math. 116 113-134
  • [3] Bochner S(1940)Harmonic surfaces in Riemann metric Trans. Am. Math. Soc. 47 146-154
  • [4] Bourguignon J-P(1992)Spineurs, opérateurs de Dirac et variations de métriques Commun. Math. Phys. 144 581-599
  • [5] Gauduchon P(2015)Some aspects of Dirac-harmonic maps with curvature term Differ. Geom. Appl. 40 1-13
  • [6] Branding V(2016)Dirac-harmonic maps with torsion Commun. Contemp. Math. 18 1550064-474
  • [7] Branding V(1976)A locally supersymmetric and reparametrization invariant action for the spinning string Phys. Lett. B 65 471-84
  • [8] Brink L(2005)Regularity theorems and energy identities for Dirac-harmonic maps Math. Z. 251 61-432
  • [9] Di Vecchia P(2006)Dirac-harmonic maps Math. Z. 254 409-78
  • [10] Howe P(2014)Gradient estimates and Liouville theorems for Dirac-harmonic maps J. Geom. Phys. 76 66-2635