Conformal immersions of Riemannian products in low codimension

被引:0
作者
Felippe Guimarães
Bruno Mendonça
机构
[1] Universidade Federal de Sergipe,
[2] Universidade Estadual de Londrina,undefined
来源
Geometriae Dedicata | 2020年 / 209卷
关键词
Submanifolds; Riemannian products; Conformal immersions; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that conformal immersion of a Riemannian product M0n0×M1n1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_0^{n_0}\times M_1^{n_1}$$\end{document} as a hypersurface in a Euclidean space must be an extrinsic product of immersions, under the assumption that n0,n1≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_0, n_1 \ge 2$$\end{document} and that M0n0×M1n1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{n_0}_0\times M^{n_1}_1$$\end{document} is not conformally flat. We also state a similar theorem for an arbitrary number of factors, more precisely, a conformal immersion f:M0n0×⋯×Mknk→Rn+k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M^{n_0}_0 \times \cdots \times M^{n_k}_k \rightarrow {{\mathbb {R}}}^{n+k}$$\end{document} must be an extrinsic product of immersions if one of the factors admits a plane with vanishing curvature and the remaining factors are not flat.
引用
收藏
页码:59 / 68
页数:9
相关论文
共 20 条
[1]  
Alexander S(1976)Isometric immersions of Riemannian products in Euclidean space J. Differ. Geom. 11 47-57
[2]  
Maltz R(1994)Isometric immersions of Riemannian products revisited Comment. Math. Helv. 69 281-290
[3]  
Barbosa JL(1995)Partial tubes about immersed manifolds Geom. Dedicata 54 145-169
[4]  
Dajczer M(2004)Genuine deformations of submanifolds Commun. Anal. Geom. 12 1105-1129
[5]  
Tojeiro R(2004)Isometric immersions in codimension two of warped products into space forms Ill. J. Math. 48 711-746
[6]  
Carter S(2013)Isometric immersions of warped products Proc. Am. Math. Soc. 141 1795-1803
[7]  
West A(1979)Minimal immersions of Riemannian products into real space forms Tokyo J. Math. 2 63-70
[8]  
Dajczer M(1971)Isometric immersions of Riemannian products J. Differ. Geom. 5 159-168
[9]  
Florit LA(1977)Submanifolds of constant positive curvature I Duke Math. J. 44 449-484
[10]  
Dajczer M(1996)Isometric immersions of warped products Differ. Geom. Appl. 6 1-30