Bayesian network structure learning using quantum annealing

被引:0
作者
B. O’Gorman
R. Babbush
A. Perdomo-Ortiz
A. Aspuru-Guzik
V. Smelyanskiy
机构
[1] Quantum Artificial Intelligence Laboratory,Department of Chemistry and Chemical Biology
[2] NASA Ames Research Center,undefined
[3] Moffett Field,undefined
[4] Harvard University,undefined
来源
The European Physical Journal Special Topics | 2015年 / 224卷
关键词
Bayesian Network; European Physical Journal Special Topic; Directed Acyclic Graph; Directed Cycle; Penalty Weight;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a method for the problem of learning the structure of a Bayesian network using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation of a standard posterior-probability scoring function on graphs as a pseudo-Boolean function, which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for enforcing the constraints necessary for the reformulation; our proposed method requires 𝓞(n2) qubits for n Bayesian network variables. Furthermore, we prove lower bounds on the necessary weighting of these penalty terms. The logical structure resulting from the mapping has the appealing property that it is instance-independent for a given number of Bayesian network variables, as well as being independent of the number of data cases.
引用
收藏
页码:163 / 188
页数:25
相关论文
共 40 条
[1]  
Yu D.(2010)undefined ApJ 710 869-undefined
[2]  
Huang X.(2008)undefined BMC Syst. Biol. 2 57-undefined
[3]  
Wang H.(2012)undefined Phys. Rev. Lett. 109 050501-undefined
[4]  
Cui Y.(2014)undefined Phys. Rev. A 89 022342-undefined
[5]  
Hu Q.(2013)undefined Phys. Rev. Lett. 111 130505-undefined
[6]  
Zhou R.(1995)undefined Mach. Learning 20 197-undefined
[7]  
Djebbari A.(1998)undefined Phys. Rev. E 58 5355-undefined
[8]  
Quackenbush J.(1989)undefined Phys. Rev. B 39 11828-undefined
[9]  
Somma R.D.(2008)undefined Rev. Mod. Phys. 80 1061-undefined
[10]  
Nagaj D.(2008)undefined Quantum Info. Comput. 8 900-undefined